Objective(s): Integrating magnetic resonance imaging (MRI) with proton therapy holds significant promise for enhancing treatment efficacy. Magnetic nanoparticles (MNPs), such as gadolinium and superparamagnetic iron oxide nanoparticles (SPIONs), are well-known for improving tissue contrast in MRI. In this study, we investigate the potential of core–shell nanoparticles (Au@MNPs) as agents that can enhance the delivery of therapeutic doses to targeted tissues. Specifically, we examine how variations in core diameter and shell thickness, using either gadolinium oxide (Gd₂O₃) or SPION shells, influence dose enhancement. Materials and Methods: A simulated proton beam with a weighted energy spectrum—representing both primary and secondary protons within the Spread-Out Bragg Peak (SOBP) region—was used to irradiate the nanoparticles. The energy deposited within the nanoparticles, as well as the phase space of surrounding secondary particles, was evaluated. Key parameters, including energy efficiency, total energy release, and the number of secondary electrons, were analyzed to compare the performance of various nanoparticle designs. Results: Our findings indicate that incorporating a gold core is advantageous for thin magnetic layers (<15 nm), as it enhances the dose around the nanoparticle while maintaining a size compatible with MRI applications (<20 nm). In contrast, for thicker magnetic layers (greater than 20 nm), a larger gold core diameter is required to achieve effective dose enhancement. Conclusion: These results suggest that embedding a gold core with a diameter of less than 15 nm within MRI-compatible nanoparticles is a promising strategy for enhancing dose delivery in proton therapy. Further studies are warranted to investigate the impact of core–shell nanoparticles on magnetic properties, which are critical for their theranostic potential.
Hoffmann A, Oborn B, Moteabbed M, Yan S, Bortfeld T, Knopf A, et al. MR-guided proton therapy: a review and a preview. Radiat Oncol. 2020;15(1):1–13.
Gantz S, Karsch L, Pawelke J, Peter J, Schellhammer S, Smeets J, et al. Direct visualization of proton beam irradiation effects in liquids by MRI. Proc Natl Acad Sci U S A. 2023;120(23):e2301160120.
Paganelli C, Oborn B, Hoffmann A, Riboldi M. Magnetic resonance imaging in particle therapy. Imaging Part Ther. 2024;7(1):7–21.
Smith L, Kuncic Z, Byrne HL, Waddington D. Nanoparticles for MRI-guided radiation therapy: a review. Cancer Nanotechnol. 2022;13(1):1–28.
Rahman M. Magnetic resonance imaging and iron-oxide nanoparticles in the era of personalized medicine. Nanotheranostics. 2023;7(4):424–442.
Szwed M, Marczak A. Application of nanoparticles for magnetic hyperthermia for cancer treatment—the current state of knowledge. Cancers. 2024;16(6):1156–1172.
Papi A, Irajirad R, Yousefvand M, Montazerabadi A, Mohammadi Z. Synthesis and evaluation of SPION@CMD@Ser-LTVSPWY peptide as a targeted probe for detection of HER2+ cancer cells in MRI. Nanomed J. 2021;8(4):279–289.
Salehian E, Safa R, Saffari M, Ashrafi S, Farhoudi R, Ebrahimi SES, et al. Synthesis and evaluation of Gd3+-Trp-PLGA as novel nanosized MR tumor imaging candidate. Nanomed J. 2021;8(2):117–123.
Peukert D, Kempson I, Douglass M, Bezak E. Metallic nanoparticle radiosensitisation of ion radiotherapy: a review. Phys Med. 2018;52:121–128.
Moradi F, Rezaee Ebrahim Saraee K, Abdul Sani SF, Bradley DA. Metallic nanoparticle radiosensitization: the role of Monte Carlo simulations towards progress. Radiat Phys Chem. 2021;180:109294.
Tremi I, Spyratou E, Souli M, Efstathopoulos EP, Makropoulou M, Georgakilas AG, et al. Requirements for designing an effective metallic nanoparticle (NP)-boosted radiation therapy (RT). Cancers. 2021;13(13):3185–3201.
Schuemann J, Bagley AF, Berbeco R, Bromma K, Butterworth KT, Byrne HL, et al. Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Phys Med Biol. 2020;65(21):21RM02.
Ahmadi Ganjeh Z, Mosleh-Shirazi MA. Macroscopic and microscopic investigation of maximum effectiveness of proton-boron capture therapy using Monte Carlo simulation. Radiat Phys Chem. 2024;214:111289.
Díaz-Galindo CA, Garnica-Garza HM. Radiation source personalization for nanoparticle-enhanced radiotherapy using dynamic contrast-enhanced MRI in the treatment planning process. Radiat Phys Chem. 2024;217:111518.
Brero F, Calzolari P, Albino M, Antoccia A, Arosio P, Berardinelli F, et al. Proton therapy, magnetic nanoparticles and hyperthermia as combined treatment for pancreatic BxPC3 tumor cells. Nanomaterials. 2023;13(5):791–805.
Parishan M, Faghihi R, Kadoya N, Jingu K. The effects of a transverse magnetic field on the dose enhancement of nanoparticles in a proton beam: a Monte Carlo simulation. Phys Med Biol. 2020;65(8):085002.
Rafiepour P, Sina S, Mortazavi SMJ, Zabihi A. The effects of magnetic field along with nanoparticles on DNA damage induced by a carbon beam: a Monte Carlo study. 2021 IEEE Nucl Sci Symp Med Imaging Conf Rec NSS/MIC. 2021;1–4.
Martinov MP, Fletcher EM, Thomson RM. Multiscale Monte Carlo simulations of gold nanoparticle dose-enhanced radiotherapy II. Cellular dose enhancement within macroscopic tumor models. Med Phys. 2023;50(9):5842–5852.
Nath P, Charchi N, Shvydka D, Ray A. Quantitative analysis of reactive oxygen species produced by core-shell gold nanoparticles during radiation therapy. Proc SPIE. 2024;PC12859:PC128590K.
Rasouli FS, Masoudi SF. Monte Carlo investigation of the effect of gold nanoparticles' distribution on cellular dose enhancement. Radiat Phys Chem. 2019;158:6–12.
Yaftian M, Saeedzadeh E, Khosravi H, Mohammadi E. Evaluation of the effect of gold and iron oxide nanoparticles dispersed on the bolus in radiation therapy by using Monte Carlo simulation. Nanomed J. 2023;10(2):153–162.
Wälzlein C, Scifoni E, Krämer M, Durante M. Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons. Phys Med Biol. 2014;59(6):1441–1450.
Rudek B, McNamara A, Ramos-Méndez J, Byrne H, Kuncic Z, Schuemann J. Radio-enhancement by gold nanoparticles and their impact on water radiolysis for x-ray, proton and carbon-ion beams. Phys Med Biol. 2019;64(17):175005.
León Félix L, Coaquira JAH, Martínez MAR, Goya GF, Mantilla J, Sousa MH, et al. Structural and magnetic properties of core-shell Au/Fe3O4 nanoparticles. Sci Rep. 2017;7(1):1–8.
Liu H, Wu J, Min JH, Kim YK. One-pot synthesis and characterization of bifunctional Au-Fe3O4 hybrid core-shell nanoparticles. J Alloys Compd. 2012;537:60–64.
Oliveira-Filho GB, Atoche-Medrano JJ, Aragón FFH, Mantilla Ochoa JC, Pacheco-Salazar DG, da Silva SW, et al. Core-shell Au/Fe3O4 nanocomposite synthesized by thermal decomposition method: structural, optical, and magnetic properties. Appl Surf Sci. 2021;563:150290.
Umut E, Pineider F, Arosio P, Sangregorio C, Corti M, Tabak F, et al. Magnetic, optical and relaxometric properties of organically coated gold-magnetite (Au-Fe3O4) hybrid nanoparticles for potential use in biomedical applications. J Magn Magn Mater. 2012;324(15):2373–2379.
Slama Y, Arcambal A, Septembre-Malaterre A, Morel AL, Pesnel S, Gasque P. Evaluation of core-shell Fe3O4@Au nanoparticles as radioenhancer in A549 cell lung cancer model. Heliyon. 2024;10(8):e29297.
Xu X, Wu J, Dai Z, Hu R, Xie Y, Wang L. Monte Carlo simulation of physical dose enhancement in core-shell magnetic gold nanoparticles with TOPAS. Front Oncol. 2022;12:1–12.
Orlando T, Capozzi A, Umut E, Bordonali L, Mariani M, Galinetto P, et al. Spin dynamics in hybrid iron oxide-gold nanostructures. J Phys Chem C. 2015;119(2):1224–1233.
Lin FH, Doong RA. Catalytic nanoreactors of Au@Fe3O4 yolk-shell nanostructures with various Au sizes for efficient nitroarene reduction. J Phys Chem C. 2017;121(14):7844–7853.
Liu H, Wu J, Min JH, Kim YK. One-pot synthesis and characterization of bifunctional Au-Fe3O4 hybrid core-shell nanoparticles. J Alloys Compd. 2012;537:60–64.
Umut E, Pineider F, Arosio P, Sangregorio C, Corti M, Tabak F, et al. Magnetic, optical and relaxometric properties of organically coated gold-magnetite (Au-Fe3O4) hybrid nanoparticles for potential use in biomedical applications. J Magn Magn Mater. 2012;324(15):2373–2379.
Oliveira-Filho GB, Atoche-Medrano JJ, Aragón FFH, Mantilla Ochoa JC, Pacheco-Salazar DG, da Silva SW, et al. Core-shell Au/Fe3O4 nanocomposite synthesized by thermal decomposition method: structural, optical, and magnetic properties. Appl Surf Sci. 2021;563:150290.
León Félix L, Coaquira JAH, Martínez MAR, Goya GF, Mantilla J, Sousa MH, et al. Structural and magnetic properties of core-shell Au/Fe3O4 nanoparticles. Sci Rep. 2017;7(1):1–8.
Perl J, Shin J, Schümann J, Faddegon B, Paganetti H. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys. 2012;39(11):6818–6837.
Faddegon B, Ramos-Méndez J, Schuemann J, McNamara A, Shin J, Perl J, et al. The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Phys Med. 2020;72:114–121.
Schuemann J, McNamara AL, Ramos-Méndez J, Perl J, Held KD, Paganetti H, et al. TOPAS-nBio: an extension to the TOPAS simulation toolkit for cellular and sub-cellular radiobiology. Radiat Res. 2018;191(2):125–138.
Van Delinder KW, Khan R, Gräfe JL. Radiobiological impact of gadolinium neutron capture from proton therapy and alternative neutron sources using TOPAS-nBio. Med Phys. 2021;48(7):4004–4016.
Seo SJ, Han SM, Cho JH, Hyodo K, Zaboronok A, You H, et al. Enhanced production of reactive oxygen species by gadolinium oxide nanoparticles under core-inner-shell excitation by proton or monochromatic X-ray irradiation: implication of the contribution from the interatomic de-excitation-mediated nanoradiator effect to dose enhancement. Radiat Environ Biophys. 2015;54(4):423–431.
Banoqitah E, Djouider F. Dose distribution and dose enhancement by using gadolinium nanoparticles implant in brain tumor in stereotactic brachytherapy. Radiat Phys Chem. 2016;127:68–71.
De Vera P, Abril I, Garcia-Molina R. Energy spectra of protons and generated secondary electrons around the Bragg peak in materials of interest in proton therapy. Radiat Res. 2018;190(3):282–297.
Newhauser WD, Zhang R. The physics of proton therapy. Phys Med Biol. 2015;60(8):R155–R209.
Avasthi A, Caro C, Pozo-Torres E, Pernia Leal M, García-Martín ML, Puente-Santiago AR, et al. Magnetic nanoparticles as MRI contrast agents. Top Curr Chem. 2021;378(3):1–43.
Wei H, Bruns OT, Kaul MG, Hansen EC, Barch M, Wiśniowska A, et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci U S A. 2017;114(9):2325–2330.
Johny J, van Halteren CER, Cakir FC, Zwiehoff S, Behrends C, Bäumer C, et al. Surface chemistry and specific surface area rule the efficiency of gold nanoparticle sensitizers in proton therapy. Chemistry. 2023;29(50):e202301260.
Peukert D, Kempson I, Douglass M, Bezak E. Gold nanoparticle enhanced proton therapy: a Monte Carlo simulation of the effects of proton energy, nanoparticle size, coating material, and coating thickness on dose and radiolysis yield. Med Phys. 2020;47(2):651–661.
Mansouri E, Mesbahi A, Hamishehkar H, Montazersaheb S, Hosseini V, Rajabpour S. The effect of nanoparticle coating on biological, chemical and biophysical parameters influencing radiosensitization in nanoparticle-aided radiation therapy. BMC Chem. 2023;17(1):1–14.
Articles in Press, Accepted Manuscript Available Online from 23 September 2025
Bordbar, M. , Parishan, M. , Safari, R. and Rakeb, Z. (2025). Monte Carlo simulation of Au@MNP nanoparticles for MRI-guided proton therapy: tailoring core-shell architecture for dose enhancement. Nanomedicine Journal, (), -. doi: 10.22038/nmj.2025.81909.2039
MLA
Bordbar, M. , , Parishan, M. , , Safari, R. , and Rakeb, Z. . "Monte Carlo simulation of Au@MNP nanoparticles for MRI-guided proton therapy: tailoring core-shell architecture for dose enhancement", Nanomedicine Journal, , , 2025, -. doi: 10.22038/nmj.2025.81909.2039
HARVARD
Bordbar, M., Parishan, M., Safari, R., Rakeb, Z. (2025). 'Monte Carlo simulation of Au@MNP nanoparticles for MRI-guided proton therapy: tailoring core-shell architecture for dose enhancement', Nanomedicine Journal, (), pp. -. doi: 10.22038/nmj.2025.81909.2039
CHICAGO
M. Bordbar , M. Parishan , R. Safari and Z. Rakeb, "Monte Carlo simulation of Au@MNP nanoparticles for MRI-guided proton therapy: tailoring core-shell architecture for dose enhancement," Nanomedicine Journal, (2025): -, doi: 10.22038/nmj.2025.81909.2039
VANCOUVER
Bordbar, M., Parishan, M., Safari, R., Rakeb, Z. Monte Carlo simulation of Au@MNP nanoparticles for MRI-guided proton therapy: tailoring core-shell architecture for dose enhancement. Nanomedicine Journal, 2025; (): -. doi: 10.22038/nmj.2025.81909.2039