Single-Walled carbon nanotubes for precision treatment of Duchenne muscular dystrophy: a mini review

Document Type : Review Paper

Authors

1 School of Pharmaceutical Sciences, CT University, Ferozepur Rd, Sidhwan Khurd, Punjab, India

2 Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India

10.22038/nmj.2025.86236.2169

Abstract

Duchenne Muscular Dystrophy (DMD) is a severe X-linked neuromuscular disorder characterized by progressive muscle degeneration due to mutations in the dystrophin gene. This review aims to critically assess the application of Single-Walled Carbon Nanotubes (SWCNTs) as advanced nanocarriers for DMD treatment. It focuses on overcoming limitations of current strategies—such as poor bioavailability, low targeting efficiency, and off-target toxicity—by leveraging the physicochemical versatility and functionalization potential of SWCNTs.
Single-Walled Carbon Nanotubes (SWCNTs) have emerged as a promising nanocarrier system for precision treatment of DMD, offering superior drug-loading capacity, targeted delivery, and enhanced cellular uptake.
Their high surface area (~1315 m²/g) and tunable functionalization enable efficient transport of antisense oligonucleotides (ASOs), phosphorodiamidate morpholino oligomers (PMOs), and CRISPR/Cas9 gene-editing complexes to dystrophic muscle fibers. Preclinical studies indicate 70% exon-skipping efficiency and 55% dystrophin restoration with SWCNT-based PMOs, alongside 8-fold higher genome correction efficiency in CRISPR applications. Additionally, SWCNTs exhibit prolonged circulation, improved muscle tissue penetration, and reduced off-target accumulation compared to lipid nanoparticles (LNPs). However, safety concerns such as potential oxidative stress, immune interactions, and long-term biodegradability remain key challenges for clinical translation. Functionalization strategies, AI-driven molecular modeling, and targeted clearance mechanisms are being explored to optimize SWCNT biocompatibility.
By addressing current translational barriers—including toxicity, immunogenicity, and large-scale production—SWCNT-based platforms hold substantial promise as next-generation precision therapies for DMD. Their integration into personalized nanomedicine frameworks could redefine treatment paradigms in neuromuscular disorders. Addressing current limitations will be crucial in harnessing SWCNTs as a next-generation precision therapy for DMD, paving the way for personalized nanomedicine applications in neuromuscular disorders.

Keywords


  1. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008;68(16):6652–6660.
  2. Kam NW, O'Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A. 2005;102(33):11600–11605.
  3. Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009;2(2):85–120.
  4. Zhu Y, Li W, Li Q, Li Y, Li Y, Zhang X, et al. Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. J Am Chem Soc. 2005;127(28):9875–9880.
  5. Shi X, Sitharaman B, Pham QP, Liang F, Wu K, Edward Billups W, et al. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials. 2007;28(28):4078–4090.
  6. Demirer GS, Silva TN, Jackson CT, Thomas JB, Ehrhardt DW, Rhee SY, et al. Nanotechnology to advance CRISPR-Cas genetic engineering of plants. Nat Nanotechnol. 2021;16(3):243–250.
  7. Zhang H, Goh NS, Wang JW, Pinals RL, González-Grandío E, Landry MP. Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. Nat Nanotechnol. 2021;16(11):1371–1376.
  8. Jeong S, González-Grandío E, Navarro N, Pinals RL, Ledesma F, Yang D, et al. Extraction of viral nucleic acids with carbon nanotubes increases SARS-CoV-2 quantitative reverse transcription polymerase chain reaction detection sensitivity. ACS Nano. 2021;15(6):10309–10317.
  9. Kam NW, Liu Z, Dai H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc. 2005;127(36):12492–1243.
  10. Duan D. Gene and mutation‑based understanding of Duchenne muscular dystrophy pathogenesis and clinical progression. Nat Rev Dis Primers. 2021;7(1):36.
  11. Aartsma‑Rus A, Auer‑Grumbach M, Muntoni F. Molecular mutation types and diagnosis in Duchenne and Becker muscular dystrophy. J Med Genet. 2016;53(3):145–151.
  12. Angulski AB, Bragazzi NL, Socolovsky M. The genetic basis of DMD: structure, inheritance, and mutation spectrum. Front Physiol. 2023;14:1183101.
  13. Vo AH, McDonald CM. Modifier genes and phenotype variability in Duchenne muscular dystrophy. Pharmacol Res. 2015; what review showed SPP1/LTBP4 modify age of ambulation and cardiac outcome.
  14. PMCGatto F, Bragazzi NL, Socolovsky M. Modifier gene impact on genotype–phenotype relationships in DMD patients. Front Genet. 2024;15:1360224.
  15. Liu Z, Davis C, Cai W, He L, Chen X, Dai H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci U S A. 2008;105(5):1410–1415.
  16. Fernández-Costa JM, Fernández-Garibay X, Velasco-Mallorquí F, Ramón-Azcón J. Bioengineered in vitro skeletal muscles as new tools for muscular dystrophy research. J Tissue Eng. 2021;12:2041731420988806.
  17. Zhang Y, Li J, Shen Y, Wang Y, Ji Z, Li Y, et al. Oxidation-treated carbon nanotube yarns accelerate neurite outgrowth and reduce inflammation for potential nerve tissue engineering applications. Sci Rep. 2023;13(1):1445.
  18. Juhas M, Ye J, Bursac N. Design, evaluation, and application of engineered skeletal muscle. Methods. 2015;99:81–90.
  19. Juhas M, Bursac N. Engineering skeletal muscle repair. Curr Opin Biotechnol. 2013;24(5):880–886.
  20. Juhas M, Bursac N. Roles of adherent myogenic cells and dynamic culture in engineered muscle function and maintenance of satellite cells. Biomaterials. 2014;35(35):9438–9446.
  21. Juhas M, Engelmayr GC Jr, Fontanella AN, Palmer GM, Bursac N. Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. Proc Natl Acad Sci U S A. 2014;111(15):5508–5513.
  22. Juhas M, Bursac N. Functional skeletal muscle regeneration with orthotopically implanted engineered muscle units composed of myogenic progenitor cells and fibrin hydrogels. Biomaterials. 2014;35(22):5866–5875.
  23. Juhas M, Bursac N. Engineering in vitro muscle models for drug discovery and toxicology applications. Drug Discov Today. 2015;20(12):1572–1579.
  24. Juhas M, Bursac N. Building skeletal muscle from stem cells: methods to form skeletal myotubes and their applications. Methods Mol Biol. 2015;1210:131–144.
  25. Juhas M, Bursac N. Tissue-engineered skeletal muscle: challenges, applications, and future directions. Curr Opin Biotechnol. 2015;35:96–104.
  26. Balasubramanian K, Burghard M. Chemically functionalized carbon nanotubes. Small. 2005;1(2):180–192.
  27. Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials. 2007;28(2):344–353.
  28. Lobo AO, Antunes EF, Machado AR, Pacheco-Soares C, Trava-Airoldi VJ, Corat EJ. Carbon nanotube-based biomaterials for orthopedic applications. Acta Biomater. 2010;6(8):3154–3165.
  29. Ramanathan T, Fisher FT, Ruoff RS, Brinson LC. Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem Mater. 2005;17(6):1290–1295.
  30. Lobo AO, Arinzeh TL. Biphasic calcium phosphate scaffolds with carbon nanotubes and its effect on osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A. 2010;94(4):1004–1011.
  31. Shi X, Sitharaman B, Pham QP, Liang F, Wu K, Edward Billups W, et al. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials. 2007;28(28):4078–4090.
  32. Tran PA, Zhang L, Webster TJ. Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev. 2009;61(12):1097–1114.
  33. Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett. 2006;160(2):121–126.
  34. Hopley EL, Salmasi S, Kalaskar DM, Seifalian AM. Carbon nanotubes leading the way forward in new generation 3D tissue engineering. Biotechnol Adv. 2014;32(5):1000–1014.
  35. Martin CR, Kohli P. The emerging field of nanotube biotechnology. Nat Rev Drug Discov. 2003;2(1):29–37
  36. Shvedova AA, Kisin ER, Murray AR, Johnson VJ, Gorelik O, Arepalli S, et al. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol. 2008;295(4):L552–L565.
  37. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 2005;207(3):221–231.
  38. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008;3(7):423–428.
  39. Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77(1):126–134.
  40. Nakanishi J, Morimoto Y, Ogura I, Kobayashi N, Naya M, Endoh S, et al. Risk assessment of the carbon nanotube group. Risk Anal. 2015;35(10):1940–1956.
  41. Sato Y, Yokoyama A, Shibata K, Akimoto Y, Ogino S, Nodasaka Y, et al. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst. 2005;1(2):176–182.
  42. Donaldson K, Murphy FA, Duffin R, Poland CA. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 2010;7:5.
  43. Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K, Nakanishi J. Comparative pulmonary toxicity study of nano-TiO₂ particles of different sizes and agglomerations in rats: different short- and long-term post-instillation results. Toxicology. 2009;264(1-2):110–118.
  44. Occupational exposure to carbon nanotubes and nanofibers. Current Intelligence Bulletin 65. 2013.
  45. Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol. 2010;5(5):354–359.
  46. Sun YP, Fu K, Lin Y, Huang W. Functionalized carbon nanotubes: properties and applications. Acc Chem Res. 2002;35(12):1096–1104.
  47. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A. Organic functionalization of carbon nanotubes. J Am Chem Soc. 2002;124(5):760–761.
  48. Mamedov AA, Kotov NA, Prato M, Guldi DM, Wicksted JP, Hirsch A. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat Mater. 2002;1(3):190–194.
  49. Balasubramanian K, Burghard M. Chemically functionalized carbon nanotubes. Small. 2005;1(2):180–192.
  50. Hirsch A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed Engl. 2002;41(11):1853–1859.
  51. Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev. 2006;106(3):1105–1136.
  52. Banerjee S, Hemraj-Benny T, Wong SS. Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater. 2005;17(1):17–29.
  53. Karousis N, Tagmatarchis N, Tasis D. Current progress on the chemical modification of carbon nanotubes. Chem Rev. 2010;110(9):5366–5397.
  54. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, et al. Fullerene pipes. Science. 1998;280(5367):1253–1256.
  55. Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res. 2008;41(1):60–68.
  56. Liu Z, Davis C, Cai W, He L, Chen X, Dai H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci U S A. 2008;105(5):1410–1415.
  57. Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009;2(2):85–120.
  58. Aartsma-Rus A, Ginjaar IB, Bushby K. The importance of genetic diagnosis for Duchenne and Becker muscular dystrophy. J Med Genet. 2016;53(3):145–151.
  59. Pascual-Morena C, et al. Genetic modifiers and phenotype variability in Duchenne muscular dystrophy: meta-analysis of TGFβ-related gene variants. J Hum Genet. 2021; estimates impact of SPP1, LTBP4 modifiers on disease onset.
  60. Gatto F, Bragazzi NL, Socolovsky M. Modifier gene impact on genotype–phenotype relationships in DMD patients. Front Genet. 2024;15:1360224.
  61. Venugopal V, McDonald CM. Dystrophinopathies: Duchenne muscular dystrophy etiology, inheritance, and mutation spectrum. StatPearls. 2023.
  62. Duan D. Gene and mutation-based understanding of Duchenne muscular dystrophy pathogenesis and clinical progression. Nat Rev Dis Primers. 2021;7(1):36.
  63. Sarker S, Sultana J, Chakraborty P, et al. Mutation spectrum and phenotypic variability of dystrophin gene in a Bangladeshi cohort: insights into hotspots and novel variants. Sci Rep. 2023;13(1):17690.