Silica-coated bismuth ferrite nanoparticles as novel radiosensitizers for cancer radiotherapy

Document Type : Research Paper

Authors

1 Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.

3 Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran and Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.

4 Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Objective(s): Radiotherapy is a cornerstone of cancer treatment; however, tumor radioresistance remains a major limitation. The use of radiosensitizers offers a strategy to selectively enhance the sensitivity of malignant cells to ionizing radiation while minimizing toxicity to surrounding normal tissues. In this study, we investigated the radiosensitizing potential of silica-coated bismuth ferrite nanoparticles (BFO-Si NPs).
Material and Methods: Bismuth ferrite nanoparticles (BFO NPs) were synthesized via the sol-gel method and coated with silica to produce BFO-Si NPs, and their morphology and structural properties were characterized using FESEM, EDS, HR-TEM, XRD, and DLS. Their cytotoxicity against human non-small cell lung carcinoma (NSCLC) SK-MES-1 cells was evaluated using the MTT assay. To further assess their efficacy as radiosensitizers, cell viability, colony-forming capacity, and apoptotic responses following X-ray irradiation were evaluated.
Results: The BFO-Si NPs exhibited uniform spherical geometry, a narrow size distribution, and good colloidal stability. They significantly increased apoptosis induction and decreased clonogenic survival of SK-MES-1 cells under 6 MV X-ray irradiation compared with radiation alone.
Conclusion: These findings demonstrate the potential of silica-coated bismuth ferrite nanoparticles as safe and effective radiosensitizers, capable of enhancing radiotherapeutic outcomes in NSCLC.

Keywords

Main Subjects


  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.
  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249.
  3. Chalela R, Curull V, Enriquez C, Pijuan L, Bellosillo B, Gea J. Lung adenocarcinoma: from molecular basis to genome-guided therapy and immunotherapy. J Thorac Dis. 2017;9(7):2142.
  4. Zhao R, Ding D, Yu W, Zhu C, Ding Y. The lung adenocarcinoma microenvironment mining and its prognostic merit. Technol Cancer Res Treat. 2020;19:1533033820977547.
  5. De Ruysscher D, Niedermann G, Burnet NG, Siva S, Lee AW, Hegi-Johnson F. Radiotherapy toxicity. Nat Rev Dis Primers. 2019;5(1):13.
  6. Moloudi K, Khani A, Najafi M, Azmoonfar R, Azizi M, Nekounam H, et al. Critical parameters to translate gold nanoparticles as radiosensitizing agents into the clinic. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023;15(6):e1886.
  7. Khosravi H, Manoochehri H, Farmany A, Khoshghadam A, Rafieemehr H, Azmoonfar R. Bismuth selenide nanoparticles enhance radiation sensitivity in colon cancer cells in vitro. Biochem Biophys Rep. 2024;38:101732.
  8. Chung YC, Chen IH, Chen CJ. The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake. Biomaterials. 2008;29(12):1807–1816.
  9. Verma A, Uzun O, Hu Y, Han HS, Watson N, Chen S, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater. 2008;7(7):588–595.
  10. Bibb E, Alajlan N, Alsuwailem S, Mitchell B, Brady A, Maqbool M, et al. Internalized nanoceria modify the radiation-sensitivity profile of MDA MB231 breast carcinoma cells. Biology (Basel). 2021;10(11):1148.
  11. Shen H, Huang H, Jiang Z. Nanoparticle-based radiosensitization strategies for improving radiation therapy. Front Pharmacol. 2023;14:1145551.
  12. Kavousi N, Nazari M, Toossi MTB, Azimian H, Alibolandi M. Smart bismuth-based platform: a focus on radiotherapy and multimodal systems. J Drug Deliv Sci Technol. 2024;101:106136.
  13. Shahbazi MA, Faghfouri L, Ferreira MP, Figueiredo P, Maleki H, Sefat F, et al. The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem Soc Rev. 2020;49(4):1253–321.
  14. Catalan G, Scott JF. Physics and applications of bismuth ferrite. Adv Mater. 2009;21(24):2463–85.
  15. Wang X, Lin Y, Zhang Z, Bian J. Photocatalytic activities of multiferroic bismuth ferrite nanoparticles prepared by glycol-based sol–gel process. J Sol Gel Sci Technol. 2011;60(1):1–5.
  16. Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl. 2007;46(8):1222–1244.
  17. Chandra Sekhar D, Diwakar BS, Madhavi N. Silica coated magnetic nanoparticles for biological applications. Int J Nanosci Nanotechnol. 2020;16(4):209–217.
  18. Bagheri E, Naserifar M, Ramezani P, Ramezani M, Alibolandi M. Silica–polymer hybrid nanoparticles for drug delivery and bioimaging. Hybrid Nanomater Drug Deliv. 2022;227–243.
  19. Klein S, Dell’Arciprete ML, Wegmann M, Distel LV, Neuhuber W, Gonzalez MC, et al. Oxidized silicon nanoparticles for radiosensitization of cancer and tissue cells. Biochem Biophys Res Commun. 2013;434(2):217–222.
  20. Fathy MM, Saad OA, Elshemey WM, Fahmy HM. Dose-enhancement of MCF7 cell line radiotherapy using silica-iron oxide nanocomposite. Biochem Biophys Res Commun. 2022;632:100–106.
  21. Chu Y, Wang L, Ke Y, Feng X, Rao W, Ren W, et al. A multifunctional mesoporous silica drug delivery nanosystem that ameliorates tumor hypoxia and increases radiotherapy efficacy. NPG Asia Mater. 2024;16(1):40.
  22. Cheng D, Ji Y, Wang B, Wang Y, Tang Y, Fu Y, et al. Dual-responsive nanohybrid based on degradable silica-coated gold nanorods for triple-combination therapy for breast cancer. Acta Biomater. 2021;128:435–446.
  23. Rajaee A, Wensheng X, Zhao L, Wang S, Liu Y, Wu Z, et al. Multifunctional bismuth ferrite nanoparticles as magnetic localized dose enhancement in radiotherapy and imaging. J Biomed Nanotechnol. 2018;14(6):1159–11568.
  24. Nosrati H, Ghaffarlou M, Salehiabar M, Mousazadeh N, Abhari F, Barsbay M, et al. Magnetite and bismuth sulfide Janus heterostructures as radiosensitizers for in vivo enhanced radiotherapy in breast cancer. Biomater Adv. 2022;140:213090.
  25. Xiao J, Zeng L, Ding S, Chen Y, Zhang X, Bian XW, et al. Tumor-tropic adipose-derived mesenchymal stromal cell mediated Bi2Se3 nano-radiosensitizers delivery for targeted radiotherapy of non-small cell lung cancer. Adv Healthc Mater. 2022;11(8):2200143.
  26. Catalano E, Miola M, Ferraris S, Novak S, Oltolina F, Cochis A, et al. Magnetite and silica-coated magnetite nanoparticles are highly biocompatible on endothelial cells in vitro. Biomed Phys Eng Express. 2017;3(2):025015.
  27. Parvez MM, Haque ME, Akter M, Ferdous H. Synthesis of bismuth ferrite nanoparticles by modified Pechini sol-gel method. Int J Sci Eng Investig. 2020;9(101):35–39.
  28. Xiang H, Wu Y, Zhu X, She M, An Q, Zhou R, et al. Highly stable silica-coated bismuth nanoparticles deliver tumor microenvironment-responsive prodrugs to enhance tumor-specific photoradiotherapy. J Am Chem Soc. 2021;143(30):11449–11461.
  29. Hasan M, Islam MF, Mahbub R, Hossain MS, Hakim M. A soft chemical route to the synthesis of BiFeO3 nanoparticles with enhanced magnetization. Mater Res Bull. 2016;73:179–186.
  30. Zhang CW, Zeng CC, Xu Y. Preparation and characterization of surface-functionalization of silica-coated magnetite nanoparticles for drug delivery. Nano. 2014;9(4):1450042.
  31. Verma R, Chauhan A, Batoo KM, Kumar R, Hadhi M, Raslan EH. Effect of calcination temperature on structural and morphological properties of bismuth ferrite nanoparticles. Ceram Int. 2021;47(3):3680–3691.
  32. Niloy NR, Chowdhury M, Anowar S, Islam J, Rhaman M. Structural and optical characterization of multiferroic BiFeO3 nanoparticles synthesized at different annealing temperatures. J Mater Sci. 2020;55(12):5000–5012.
  33. Fu C, Long X, Cai W, Chen G, Deng X. Structural and magnetic properties of bismuth ferrite nanopowders prepared via sol-gel method. Ferroelectrics. 2014;460(1):157–161.
  34. Staedler D, Passemard S, Magouroux T, Rogov A, Maguire CM, Mohamed BM, et al. Cellular uptake and biocompatibility of bismuth ferrite harmonic advanced nanoparticles. Nanomedicine. 2015;11(4):815–824.
  35. Song Q, Liu Y, Jiang Z, Tang M, Li N, Wei F, et al. The acute cytotoxicity of bismuth ferrite nanoparticles on PC12 cells. J Nanopart Res. 2014;16(5):2408.
  36. Feng L, Gai S, He F, Yang P, Zhao Y. Multifunctional bismuth ferrite nanocatalysts with optical and magnetic functions for ultrasound-enhanced tumor theranostics. ACS Nano. 2020;14(6):7245–7258.
  37. Faghfoori MH, Nosrati H, Rezaeejam H, Charmi J, Kaboli S, Johari B, et al. Anticancer effect of X-ray triggered methotrexate conjugated albumin coated bismuth sulfide nanoparticles on SW480 colon cancer cell line. Int J Pharm. 2020;582:119320.