1. Zhou B, Gitschier J. HCTR1: A human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci USA. 1997; 94(14): 7481-7486.
2. Grosell M, Blanchard J, Brix KV, Gerdes R. Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquat Toxicol. 2007; 84(2): 162-172.
3. Mustafa SA, Davies SJ, Jha AN. Determination of hypoxia and dietary copper mediated sub-lethal toxicity in carp, Cyprinus carpio, at different levels of biological organisation. Chemosphere. 2012; 87(4): 413-422.
4. Speisky H, Gómez M, Burgos-Bravo F, López-Alarcón C, Jullian C, Olea-Azar C, et al. Generation of superoxide radicals by copper-glutathione complexes: redox-consequences associated with their interaction with reduced glutathione. Bioorg Med Chem. 2009; 17(5): 1803-1810.
5. Prousek J. Fenton chemistry in biology and medicine. Pure Appl Chem. 2007; 79(12): 2325-2338.
6. Isani G, Monari M, Andreani G, Fabbri M, Carpenè E. Effect of copper exposure on the antioxidant enzymes in bivalve mollusk Scapharca inaequivalvis. Vet Res Commun. 2003; 27 (1): 691-693.
7. Al-Bairuty GA, J. Shaw BD, Handy RB. Henry T. Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol. 2013; 126: 104-115.
8. Roco MC. Nanotechnolgy: convergence with modern biology and medicine. Curr Opin Biotechnol. 2003; 14(3): 337-346.
9. Karnik BS, Davies SH, Baumann MJ, Masten SJ. Fabrication of catalytic membranes for the treatment of drinking water using combined ozonation and ultrafiltration. Environ Sci Technol. 2005; 39(19): 7656-7661.
10. Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med. 2006; 56(5): 300-306.
11. Brody AL. Nano and food packaging technologies converge. Food Technol. 2006; 60: 92-94.
12. Savolainen K, Alenius H, Norppa H, Pylkkänen L, Tuomi T, Kasper G. Risk assessment of engineered nanomaterials and nanotechnologies, a review. Toxicology. 2010; 269(2-3): 92-104.
13. Kiaune L, Singhasemanon N. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity. Rev Environ Contam Toxicol. 2011; 213: 1-26.
14. Isani G, Letizia Falcioni M, Barucca G, Sekar D, Andreani G, Carpenè E, et al. Comparative toxicity of CuO nanoparticles and CuSO4in rainbow trout. Ecotoxicol Environ Saf. 2013; 97: 40-46.
15. Talas ZS, Gulhan MF. Effects of various propolis concentrations on biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Saf. 2009; 72: 1994-1998.
16. Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology. 2008; 17(4): 287-314.
17. Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. Nanomaterials in the environment: behavior, fate, bioavailability and effects. Environ Toxicol Chem. 2008; 27(9): 1825-1851.
18. Kahru A, Dubourguier HC, Blinova I, Ivask A, Kasemets K. Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors. 2008; 8(8): 5153-5170.
19. Handy RD, Al-Bairuty G, Al-Jubory A, Ramsden CS, Boyle D, Shaw BJ, et al. Effects of manufactured nanomaterials on fishes: a target organ and body systems physiology approach. J Fish Biol. 2011; 79(4): 821-853.
20. Capek I. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci. 2004; 110(1-2): 49-74.
21. Wintrobe MM. Clinical Hematology. Kipton, London. Zar, J.H., 1974. Biostatistical Analysis. Prentice-Hall, Engelwood Cliffs, NJ. 1978; 260.
22. Mukherjee KL. Medical Laboratory Technology. Aprocedure manual for routine diagnostics tests, Vol I., Tata-McGraw- Hill, New Delhi. 1988; 48.
23. Landis WG, Yu M. Introduction to Environmental Toxicology. Crc Press. 2004. P. 509.
24. Griffin BR, Mitchell AJ. Susceptibility of channel catfish, Ictalurus punctatus (Rafinesque), to Edwardsiella ictaluri challenge following copper sulphate exposure. J Fish Dis. 2007; 30(10): 581-585.
25. Lloyd R. Factors that affect the tolerance of fish to heavy metal poisoning. Biological Problems in Water Pollution, Third Seminar, 1962 U.S. Publ. Hlth Serv. Publ. No. 999-WP-25. 1965; 181-187.
26. Mount DI. The effect of total hardness and pH on acute toxicity of zinc to fish. Air War Pollut. 1966; 10(1): 49-56.
27. Howarth RS, Sprague JB. Copper lethality to rainbow trout in waters of various hardness and pH. Water Res. 1978; 12(7): 455-462.
28. Yim JH, Kim KW, Kim SD. Effects of hardness on acute toxicity of metal mixtures using Daphnia magna: prediction of acid mine drainage toxicity. J Hazard Mater. 2006; 138(1): 16-21.
29. Decie SIV, Lewis SM. Practical Hemotology, 7th Edition. Churchill Livingstone, London/Melbourne/New York. 1991.
30. Gundersen DT, Curtis LR. Acclimation to hard or soft water at weakly alkaline pH influences gill permeability and gill surface calcium binding in rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci. 1995; 52(12): 2583-2593.
31. Penttinen S, Kostamo A, Kukkonen JVK. Combined effects of dissolved organic material and water hardness on toxicity of cadmium to Daphnia magna. Environ Toxicol Chem. 1998; 17(12): 2498-2503.
32. Richey D, Roseboom D. Acute toxicity of copper to some fishes in high alkalinity water. Illinois state water survey, Urbana, Circular. 1978; 131: 24.
33. Thomas S, Egee S. Fish Red Blood Cells: Characteristics and Physiological Role of the Membrane Ion Transporters. Comp Biochem Physiol A Mol Integr Physiol. 1998; 119(1): 79-86.
34. Neumann NF, Barreda DR, Belosevic M. Generation and functional analysis of distinct macrophage sub-populations from goldfish (Carassius auratus L.) kidney leukocyte cultures. Fish Shellfish Immunol. 2000; 10(1): 1-20.
35. Rieger AM, Hall BE, Barreda DR. Macrophage activation differentially modulates particle binding, phagocytosis and downstream antimicrobial mechanisms. Dev Comp Immunol. 2010; 34(11): 1144-1159.
36. Svoboda M, Luskova V, Drastichova J, Zlabek V. The effect of Diazinon on hematological indices of common carp (Cyprinus carpio. L). Acta Vet Brno. 2001; 70: 457-465.
37. Banaee M, Mirvagefei AR, Rafei GR, Majazi Amiri B. Effect of sub-lethal diazinon concentration on blood plasma biochemistry. Int J Environ Res. 2008; 2 (2): 189-198.
38. Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett. 2006; 163(2): 109-120.
39. Kosai P, Jiraungkoorskul W, Thammasunthorn T, Jiraungkoorskul K. Reduction of copper-induced histopathological alterations by calcium exposure in Nile tilapia (Oreochromis niloticus). Toxicol Mech Methods. 2009; 19 (6-7): 461-467.
40. Nath R, Banerjee V. Effect of pesticides methylparathion and cypermethrin on the air-breathing fish Heteropneustes fossilis. Environ Ecol. 1996; 14: 163-165.
41. Siwicki AK, Cossarini-Dunier M, Studnicka M, Demael A. In vivo effect of the organophosphorus insecticide trichlorphon on imunne response of carp (Cyprinus carpio). II. Effect of high doses of trichlorphon on nonspecific immune response. Ecotoxicol Environ Saf. 1990; 19(1): 99-105.
42. Holland MM, Steven M, Gallin JI. Disorders of Granulocytes and Monocytes. In Harrison’s Principles of Internal Medicine, edited by Anthony S. Fauci, et al. New York, McGraw-Hill. 1997.
43. Ghosh K, Banerjee V. Alteration in bloodparameters in the fish Heteropneustes fossilis exposed to dimethoate. Environ Ecol. 1993; 11: 979-981.