Medical nanobiosensors: A tutorial review

Document Type : Review Paper


1 Nanobiotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran

2 Young Researchers & Elite Club, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran Department of nanobiotechnology, Tarbiat Modares University, Tehran, Iran


A sensitive monitoring of biological analytes, such as biomolecules (protein, lipid, DNA and RNA), and biological cells (blood cell, virus and bacteria), is essential to assess and avoid risks for human health. Nanobiosensors, analytical devices that combine a biologically sensitive element with a nanostructured transducer, are being widely used for molecular detection of biomarkers associated with diagnosis of disease and detection of infectious organisms. Nanobiosensors show certain advantages over laboratory and many field methods due to their inherent specificity, simplicity and quick response. In this review, recent progress in the development of nanobiosensors in medicine is illuminated. In addition, this article reviews different kinds of bio-receptors and transducers employed in nanobiosensors. In the last section, overview of the development and application of various nanomaterials and nanostructures in biosensing has been provided. Considering all of these aspects, it can be stated that nanobiosensors offer the possibility of diagnostic tools with increased sensitivity, specificity, and reliability for medical applications.


1.Retèl VP, Hummel MJM, van Harten WH. Review on early technology assessments of nanotechnologies in oncology. Mol Oncol. 2009; 3(5–6): 394-401.
2.Safari J, Zarnegar Z. Advanced drug delivery systems: Nanotechnology of health design A review. J. Saudi Chem. Soc. 2014; 18(2): 85-99.
3.Scida K, Stege PW, Haby G, Messina GA, García CD. Recent applications of carbon-based nanomaterials in Anal. Chem: Critical review. Anal. Chim. Acta. 2011; 691(1–2): 6-17.
4.Ouvinha de Oliveira R, de Santa Maria LC, Barratt G. Nanomedicine and its applications to the treatment of prostate cancer. Ann Pharm Fr. 2014; 72 (5): 303-16.
5.Yao C, Lu J. Introduction to nanomedicine. In: Webster TJ, editor. Nanomedicine: Woodhead Publishing; 2012. p. 3-19.
6.Mulaa FJ, Krämer PM. Biosensors.  Handbook of Food Safety Engineering: Wiley-Blackwell; 2011. p. 313-51.
7.Schmidt H-L, Schuhmann W, München T, Scheller FW, Schubert F. Specific Features of Biosensors.  Sensors: Wiley-VCH Verlag GmbH; 2008. p. 717-817.
8.Vidal JC, Bonel L, Ezquerra A, Hernández S, Bertolín JR, Cubel C, et al. Electrochemical affinity biosensors for detection of mycotoxins: A review. Biosens Bioelectron. 2013; 49: 146-58.
9.Yáñez-Sedeño P, Agüí L, Villalonga R, Pingarrón JM. Biosensors in forensic analysis. A review. Anal. Chim. Acta. 2014; 823): 1-19.
10.Bellan LM, Wu D, Langer RS. Current trends in nanobiosensor technology. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011; 3(3): 229-46.
11.Chinnayelka S, McShane MJ. Resonance Energy Transfer Nanobiosensors Based on Affinity Binding between Apo-Enzyme and Its Substrate. Biomacromolecules. 2004; 5 (5): 1657-61.
12.Aguilar ZP. Chapter 4 - Nanobiosensors. In: Aguilar ZP, editor. Nanomaterials for Medical Applications: Elsevier; 2013. p. 127-79.
13.Wang J, Chen G, Jiang H, Li Z, Wang X. Advances in nano-scaled biosensors for biomedical applications. Analyst. 2013; 138 (16): 4427-35.
14.Trojanowicz M. Determination of Pesticides Using Electrochemical Enzymatic Biosensors. Electroanalysis. 2002; 14(19-20): 1311-28.
15.Wang Z, Luo X, Wan Q, Wu K, Yang N. Versatile Matrix for Constructing Enzyme-Based Biosensors. ACS Appl Mater Interfaces. 2014.
16.Lad U, Khokhar S, Kale GM. Electrochemical Creatinine Biosensors. Anal. Chem. 2008; 80(21): 7910-7.
17.Nagiev TM. 8 - Enzymatic Biosensors and Their Biomimetic Analogs: Advanced Analytical Appliances. In: Nagiev TM, editor. Coherent Synchronized Oxidation Reactions by Hydrogen Peroxide. Amsterdam: Elsevier; 2006. p. 289-307.
18.Lakard B, Magnin D, Deschaume O, Vanlancker G, Glinel K, Demoustier-Champagne S, et al. Urea potentiometric enzymatic biosensor based on charged biopolymers and electrodeposited poly-aniline. Biosens Bioelectron. 2011; 26(10): 4139-45.
19.Regina de Oliveira T, Grawe GF, Moccelini SK, Terezo AJ, Castilho M. Enzymatic biosensors based on inga-cipo peroxidase immobilised on sepiolite for TBHQ quantification. Analyst. 2014; 139(9): 2214-20.
20.Erden PE, Kılıç E. A review of enzymatic uric acid biosensors based on amperometric detection. Talanta. 2013; 107: 312-23.
21.Cruz H, Rosa C, Oliva A. Immunosensors for diagnostic applications. Parasitol Res. 2002 2002/05/01; 88(1): S4-S7.
22.Shen Z, Yan H, Zhang Y, Mernaugh RL, Zeng X. Engineering Peptide Linkers for scFv Immunosensors. Anal. Chem. 2008; 80(6): 1910-7.
23.Shirale DJ, Bangar MA, Park M, Yates MV, Chen W, Myung NV, et al. Label-Free Chemiresistive Immunosensors for Viruses. Environ. Sci. Technol. 2010 ; 44(23): 9030-5.
24.Mistry KK, Layek K, Mahapatra A, RoyChaudhuri C, Saha H. A review on amperometric-type immunosensors based on screen-printed electrodes. Analyst. 2014; 139 (10): 2289-311.
25.Ezzati Nazhad Dolatabadi J, de la Guardia M. Nanomaterial-based electrochemical immunosensors as advanced diagnostic tools. Anal. Methods. 2014; 6(12): 3891-900.
26.Diaconu I, Cristea C, Hârceagă V, Marrazza G, Berindan-Neagoe I, Săndulescu R. Electrochemical immunosensors in breast and ovarian cancer. Clin. Chim. Acta. 2013; 425: 128-38.
27.Ricci F, Adornetto G, Palleschi G. A review of experimental aspects of electrochemical immunosensors. Electrochim. Acta. 2012; 84: 74-83.
28.Burcu Bahadır E, Kemal Sezgintürk M. Applications of electrochemical immunosensors for early clinical diagnostics.  Talanta. 2015; 132: 162-74.
29.del Valle M, Bonanni A. Impedimetric DNA Biosensors Based on Nanomaterials.  Biosensors Nanotechnology: John Wiley & Sons, Inc.; 2014. p. 81-110.
30.Lazerges M, Bedioui F. Analysis of the evolution of the detection limits of electrochemical DNA biosensors. Anal. Bioanal. Chem. 2013; 405(11): 3705-14.
31.Zhao W-W, Xu J-J, Chen H-Y. Photoelectrochemical DNA Biosensors. Chem. Rev. 2014; 114(15): 7421-41.
32.Peng H-I, Miller BL. Recent advancements in optical DNA biosensors: Exploiting the plasmonic effects of metal nanoparticles. Analyst. 2011; 136(3): 436-47.
33.Sheehan PE, Whitman LJ. Detection Limits for Nanoscale Biosensors. Nano Lett. 2005; 5(4): 803-7.
34.Wells DB, Belkin M, Comer J, Aksimentiev A. Assessing Graphene Nanopores for Sequencing DNA. Nano Lett. 2012; 12(8): 4117-23.
35.Odenthal KJ, Gooding JJ. An introduction to electrochemical DNAbiosensors. Analyst. 2007; 132(7): 603-10.
36.Lee H-J, Yook J-G. Recent research trends of radio-frequency biosensors for biomolecular detection. Biosens Bioelectron. 2014; 61): 448-59.
37.Chen M, Xiong H, Wen W, Zhang X, Gu H, Wang S. Electrochemical biosensors for the assay of DNA damage initiated by ferric ions catalyzed oxidation of dopamine in room temperature ionic liquid. Electrochim. Acta. 2013; 114: 265-70.
38.Wang J, Rivas G, Cai X, Palecek E, Nielsen P, Shiraishi H, et al. DNA electrochemical biosensors for environmental monitoring. A review. Anal. Chim. Acta. 1997; 347(1–2): 1-8.
39.Zhai J, Cui H, Yang R. DNA based biosensors. Biotechnol. Adv. 1997; 15(1): 43-58.
40.Shi S, Wang X, Sun W, Wang X, Yao T, Ji L. Label-free fluorescent DNA biosensors based on metallointercalators and nanomaterials. Methods. 2013; 64(3): 305-14.
41.Radko SP, Rakhmetova SY, Bodoev NV, Archakov AI. Aptamers as affinity reagents for clinical proteomics. Biochem (Mosc) Suppl Ser B. 2007;1(3):198-209.
42.Palchetti I, Mascini M. Electrochemical nanomaterial-based nucleic acid aptasensors. Anal. Bioanal. Chem. 2012; 402(10): 3103-14.
43.Sassolas A, Blum LJ, Leca-Bouvier BD. Electrochemical Aptasensors. Electro-analysis. 2009;21(11):1237-50.
44.O'Sullivan C. Aptasensors – the future of biosensing? Anal. Bioanal. Chem. 2002; 372(1): 44-8.
45.Nguyen T, Hilton J, Lin Q. Emerging applications of aptamers to micro- and nanoscale biosensing. Microfluid Nanofluid. 2009; 6(3): 347-62.
46.Du Y, Li B, Wang E. Analytical potential of gold nanoparticles in functional aptamer-based biosensors. Bioanal Rev. 2010; 1(2-4): 187-208.
47.Liu Y, Yan J, Howland MC, Kwa T, Revzin A. Micropatterned Aptasensors for Continuous Monitoring of Cytokine Release from Human Leukocytes. Anal. Chem. 2011; 83(21): 8286-92.
48.Li L-D, Mu X-J, Peng Y, Chen Z-B, Guo L, Jiang L. Signal-On Architecture for Electrochemical Aptasensors Based on Multiple Ion Channels. Anal. Chem. 2012; 84(24): 10554-9.
49.Kwa T, Zhou Q, Gao Y, Rahimian A, Kwon L, Liu Y, et al. Reconfigurable microfluidics with integrated aptasensors for monitoring intercellular communication. Lab Chip. 2014; 14(10): 1695-704.
50.Kirby R, Cho EJ, Gehrke B, Bayer T, Park YS, Neikirk DP, et al. Aptamer-Based Sensor Arrays for the Detection and Quantitation of Proteins. Anal. Chem. 2004; 76(14): 4066-75.
51.Yuan T, Liu Z-Y, Hu L-Z, Xu G-B. Electrochemical and Electrochemilu-minescent Aptasensors. Chin. J. Anal. Chem. 2011; 39(7): 972-7.
52.Ping J, Zhou Y, Wu Y, Papper V, Boujday S, Marks RS, et al. Recent advances in aptasensors based on graphene and graphene-like nanomaterials. Biosens Bioelectron. 2015; 64: 373-85.
53.Shin H. Genetically engineered microbial biosensors for in situ monitoring of environmental pollution. Appl Microbiol Biotechnol. 2011;89(4):867-77.
54.Zhang B, Qiao M, Liu Y, Zheng Y, Zhu Y, Paton G. Application of Microbial Biosensors to Complement Geochemical Characterisation: a Case Study in Northern China. Water Air Soil Pollut. 2013; 224(2): 1-16.
55.Mulchandani A, Rajesh. Microbial Biosensors for Organophosphate Pesticides. Appl Biochem Biotechnol. 2011; 165 (2): 687-99.
56.Gäberlein S, Spener F, Zaborosch C. Microbial and cytoplasmic membrane-based potentiometric biosensors for direct determination of organophosphorus insecticides. Appl Microbiol Biotechnol. 2000; 54(5): 652-8.
57.Ponomareva ON, Arlyapov VA, Alferov VA, Reshetilov AN. Microbial biosensors for detection of biological oxygen demand (a Review). Appl Biochem Microbiol. 2011; 47 (1): 1-11.
58.Olaniran AO, Hiralal L, Pillay B. Whole-cell bacterial biosensors for rapid and effective monitoring of heavy metals and inorganic pollutants in wastewater. J. Environ. Monit. 2011; 13(10): 2914-20.
59.Lei Y, Chen W, Mulchandani A. Microbial biosensors. Anal. Chim. Acta. 2006; 568(1–2): 200-10.
60.Olaniran AO, Motebejane RM, Pillay B. Bacterial biosensors for rapid and effective monitoring of biodegradation of organic pollutants in wastewater effluents. J. Environ. Monit. 2008; 10(7): 889-93.
61.D'Souza SF. Microbial biosensors. Biosens Bioelectron. 2001; 16(6):  337-53.
62.Su L, Jia W, Hou C, Lei Y. Microbial biosensors: A review. Biosens Bioelectron. 2011; 26(5): 1788-99.
63.Bertók T, Katrlík J, Gemeiner P, Tkac J. Electrochemical lectin based biosensors as a label-free tool in glycomics. Microchim Acta. 2013; 180(1-2): 1-13.
64.Presnova GV, Rybcova MY, Egorov AM. Electrochemical biosensors based on horseradish peroxidase. Russ J Gen Chem. 2008; 78(12): 2482-8.
65.Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem. Soc. Rev. 2010; 39(5): 1747-63.
66.Trojanowicz M. Enantioselective electro-chemical sensors and biosensors: A mini-review. Electrochem. Commun.. 2014; 38: 47-52.
67.Hamidi-Asl E, Palchetti I, Hasheminejad E, Mascini M. A review on the electrochemical biosensors for determination of microRNAs. Talanta. 2013; 115: 74-83.
68.Xu Y, Wang E. Electrochemical biosensors based on magnetic micro/nano particles. Electrochim. Acta. 2012; 84: 62-73.
69.Mattiasson B. Biosensors.  Biotechnology Set: Wiley-VCH Verlag GmbH; 2008. p. 75-103.
70.Karyakin AA, Bobrova OA, Lukachova LV, Karyakina EE. Potentiometric biosensors based on polyaniline semiconductor films. Sens. Actuators, B. 1996; 33(1–3): 34-8.
71.Dzyadevych SV, Arkhypova VN, Martelet C, Jaffrezic-Renault N, Chovelon J-M, El'skaya AV, et al. Potentiometric Biosensors Based on ISFETs and Immobilized Cholinesterases. Electro-analysis. 2004; 16(22): 1873-82.
72.Wang J. Amperometric biosensors for clinical and therapeutic drug monitoring: a review. J. Pharm. Biomed. Anal. 1999; 19(1–2): 47-53.
73.Chuang Y-H, Chang Y-T, Liu K-L, Chang H-Y, Yew T-R. Electrical impedimetric biosensors for liver function detection. Biosens Bioelectron. 2011; 28(1): 368-72.
74.Huang Y, Bell MC, Suni II. Impedance Biosensor for Peanut Protein Ara h 1. Anal. Chem. 2008; 80(23): 9157-61.
75.Mikkelsen SR, Rechnitz GA. Conductometric tranducers for enzyme-based biosensors. Anal. Chem. 1989; 61(15): 1737-42.
76.Muhammad-Tahir Z, Alocilja EC. A conductometric biosensor for biosecurity. Biosens Bioelectron. 2003; 18(5–6): 813-9.
77.Borisov SM, Wolfbeis OS. Optical Biosensors. Chem. Rev. 2008; 108 (2): 423-61.
78.Liedberg B, Nylander C, Lunström I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators. 1983; 4: 299-304.
79.O'Brien Ii MJ, Brueck SRJ, Perez-Luna VH, Tender LM, Lopez GP. SPR biosensors: simultaneously removing thermal and bulk-composition effects. Biosens Bioelectron. 1999; 14(2): 145-54.
80.Tobiška P, Homola J. Advanced data processing for SPR biosensors. Sens. Actuators, B. 2005; 107(1): 162-9.
81.Kim D. Nanostructure-Based Localized Surface Plasmon Resonance Biosensors. In: Zourob M, Lakhtakia A, editors. Optical Guided-wave Chemical and Biosensors I: Springer Berlin Heidelberg; 2009. p. 181-207.
82.Soares L, Csaki A, Jatschka J, Fritzsche W, Flores O, Franco R, et al. Localized surface plasmon resonance (LSPR) biosensing using gold nanotriangles: detection of DNA hybridization events at room temperature. Analyst. 2014; 139(19): 4964-73.
83.Jia K, Bijeon JL, Adam PM, Ionescu RE. Sensitive Localized Surface Plasmon Resonance Multiplexing Protocols. Anal. Chem. 2012; 84(18): 8020-7.
84.Mayer KM, Hafner JH. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011; 111(6): 3828-57.
85.Jang HS, Park KN, Kang CD, Kim JP, Sim SJ, Lee KS. Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen. Opt. Commun. 2009; 282(14): 2827-30.
86.Durmuş NG, Lin R, Kozberg M, Dermici D, Khademhosseini A, Demirci U. Acoustic-Based Biosensors. In: Li D, editor. Encyclopedia of Microfluidics and Nanofluidics: Springer US; 2014. p. 1-15.
87.Borman S. Optical and Piezoelectric Biosensors. Anal. Chem. 1987; 59 (19): 1161A-4A.
88.Yun Y, Shanov V, Bange A, Heineman W, Halsall HB, Seth G, et al. Carbon Nanotube Smart Materials for Biology and Medicine. In: Shi D, editor. NanoScience in Biomedicine: Springer Berlin Heidelberg; 2009. p. 451-84.
89.Wang J, Musameh M. Carbon Nanotube/Teflon Composite Electrochemical Sensors and Biosensors. Anal. Chem. 2003; 75(9): 2075-9.
90.Withers F, Bointon TH, Craciun MF, Russo S. All-Graphene Photodetectors. ACS Nano. 2013; 7(6): 5052-7.
91.Allen MJ, Tung VC, Kaner RB. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2009 2010/01/13;110(1): 132-45.
92.Smirnov VA, Denisov NN, Alfimov MV. Photochemical reduction of graphite oxide. Nanotechnol Russia. 2013; 8(1-2): 1-22.
93.Bao Q, Loh KP. Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices. ACS Nano. 2012; 6(5): 3677-94.
94.Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological Interactions of Graphene-Family Nanomaterials: An Interdisciplinary Review. Chemical Research in Toxicology. 2011; 25 (1): 15-34.
95.Park K, Drummy LF, Wadams RC, Koerner H, Nepal D, Fabris L, et al. Growth Mechanism of Gold Nanorods. Chem. Mater. 2013; 25(4): 555-63.
96.Kim F, Song JH, Yang P. Photochemical Synthesis of Gold Nanorods. J. Am. Chem. Soc. 2002 ; 124 (48): 14316-7.
97.Mahmoud MA, El-Sayed MA. Different Plasmon Sensing Behavior of Silver and Gold Nanorods. J. Phys. Chem. lett. 2013; 4(9): 1541-5.
98.Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 2006; 35(11): 1084-94.
99.Massich MD, Giljohann DA, Schmucker AL, Patel PC, Mirkin CA. Cellular Response of Polyvalent Oligonucleotide−Gold Nanoparticle Conjugates. ACS Nano. 2010;  4(10): 5641-6.
100.Rai M, Yadav A, Cioffi N. Silver Nanoparticles as Nano-Antimicrobials: Bioactivity, Benefits and Bottlenecks. In: Cioffi N, Rai M, editors. Nano-Antimicrobials: Springer Berlin Heidelberg; 2012. p. 211-24.
101.Shrivastava S, Bera T, Singh SK, Singh G, Ramachandrarao P, Dash D. Characterization of Antiplatelet Properties of Silver Nanoparticles. ACS Nano. 2009; 3 (6):1357-64.
102.Link S, Wang ZL, El-Sayed MA. Alloy Formation of Gold−Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition. J. Phys. Chem. B. 1999;103(18):3529-33.
103.Ren X, Meng X, Tang F. Preparation of Ag–Au nanoparticle and its application to glucose biosensor. Sens. Actuators, B. 2005; 110(2): 358-63.
104.Wang F, Hu S. Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta. 2009; 165(1-2): 1-22.
105.Swain MD, Octain J, Benson DE. Unimolecular, Soluble Semiconductor Nanoparticle-Based Biosensors for Thrombin Using Charge/Electron Transfer. Bioconjugate Chem. 2008; 19(12): 2520-6.
106.Curri ML, Agostiano A, Leo G, Mallardi A, Cosma P, Della Monica M. Development of a novel enzyme/semiconductor nanoparticles system for biosensor application. Mater. Sci. Eng. C. 2002; 22 (2): 449-52.
107.Xu C, Yang C, Gu B, Fang S. Nanostructured ZnO for biosensing applications. Chin Sci Bull. 2013; 58 (21): 2563-6.
108.Shiryaev MA, Eremin SA, Baranov AN. Biosensors based on zinc oxide. Nanotechnol Russia. 2014; 9(3-4): 99-115.
109.Pradhan D, Niroui F, Leung KT. High-Performance, Flexible Enzymatic Glucose Biosensor Based on ZnO Nanowires Supported on a Gold-Coated Polyester Substrate. ACS Appl Mater Interfaces. 2010; 2(8): 2409-12.
110.Ahmad M, Pan C, Luo Z, Zhu J. A Single ZnO Nanofiber-Based Highly Sensitive Amperometric Glucose Biosensor. J. Phys. Chem. C. 2010; 114 (20): 9308-13.
111.Liu X, Luo Y. Surface Modifications Technology of Quantum Dots Based Biosensors and Their Medical Applications. Chin. J. Anal. Chem. 2014; 42(7): 1061-9.
112.Chaniotakis N, Buiculescu R. 11 - Semiconductor quantum dots in chemical sensors and biosensors. In: Honeychurch KC, editor. Nanosensors for Chemical and Biological Applications: Woodhead Publishing; 2014. p. 267-94.
113.Roya Z, Mansour B, Afshin M, Gamal HH. Quantum dots in semiconductor chemical sensors and biosensors. Clin. Biochem. 2011; 44(13, Supplement): S223.
114.Yang C, Xu C, Wang X, Hu X. Quantum-dot-based biosensor for simultaneous detection of biomarker and therapeutic drug: first steps toward an assay for quantitative pharmacology. Analyst. 2012; 137(5): 1205-9.