Nanotechnology; its significance in cancer and photodynamic therapy

Document Type : Review Paper


1 Photonic Laboratory, Physics Department, Kharazmi University, Tehran, Iran

2 Laser and Optics Research School, Nuclear Science and Technology Research Institute, North Karegar, Tehran, Iran.

3 Laser and Optics Research School, Nuclear Science and Technology Research Institute, North Karegar, Tehran, Iran

4 Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran


In the last decade, developments in nanotechnology have provided a new field in medicine called “Nanomedicine”. Nanomedicine has provided new tools for photodynamic therapy. Quantum dots (QDs) are approximately spherical nanoparticles that have attracted broad attention and have been used in nanomedicine applications. QDs have high molar extinction coefficients and photoluminescence quantum yield, narrow emission spectra, broad absorption, large effective stokes shifts. QDs are more photostable and resistant to metabolic degradation. These photosensitizing properties can be used as photosensitizers for Photodynamic Therapy (PDT). PDT has been recommended for its unique characteristic, such as low side effect and more efficiency. Therefore, nanomedicine leads a promising future for targeted therapy in cancer tumor. Furthermore, QDs have recently been applied in PDT, which will be addressed in this review letter. Also this review letter evaluates key aspects of nano-particulate design and engineering, including the advantage of the nanometer scale size range, biological behavior, and safety profile.


1. Wagner V, Dullaart A, Bock A-K, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol. 2006; 24(10): 1211-1218.
2. Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev. 2006; 58(14): 1456-1459.
3. Gaeeni MR, Tohidian M, MajalesAra M. Green Synthesis of CdSe colloidal nanocrystals with strong green emission by Sol-Gel method. I&ECR. 2014; 53(18): 7598-7603.
4. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Sci. 2003; 300(5624): 1434-1436.
5. Samia AC, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc. 2003; 125(51): 15736-15737.
6. Ekimov A, Onushchenko A. Quantum size effect in three-dimensional microscopic semiconductor crystals. ZhETF Pisma Redaktsiiu. 1981;34:363.
7. Brus LE. Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J chem phys. 1984; 80(9): 4403-4409.
8. Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem. 1986; 90(12): 2555-2560.
9. Murray C, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993; 115(19): 8706-8715.
10. Hines MA, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem. 1996; 100(2): 468-471.
11. Cai W, Shin D-W, Chen K, Gheysens O, Cao Q, Wang SX, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano lett. 2006; 6(4): 669-676.
12. Yu WW, Chang E, Falkner JC, Zhang J, Al-Somali AM, Sayes CM, et al. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc. 2007; 129(10): 2871-2879.
13. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005;4(6): 435-446.
14. Yu WW, Chang E, Drezek R, Colvin VL. Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun. 2006; 348(3): 781-786.
15. Chen F, Gerion D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett. 2004;4(10): 1827-1832.
16. Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev. 2003;55(3):403-419.
17. Giepmans BN, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Sci. 2006; 312(5771): 217-224.
18. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotech. 2002; 21(1): 47-51.
19. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998; 281(5385): 2013-2016.
20. Yao H, Zhang Y, Xiao F, Xia Z, Rao J. Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases. Angew Chem Inter Edi. 2007;46(23): 4346-4349.
21. So M-K, Xu C, Loening AM, Gambhir SS, Rao J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotech. 2006; 24(3): 339-343.
22. Von Tappeiner H. Uber die Wirkung fluoreszierender Stoffe auf Infusorien nach Versuchen von O. Raab Muench Med Wochenschr. 1900; 47(5).
23. Tappeiner H. Die sensibilisierende Wirkung fluorerecierender Substanzen: FCW Vogel; 1907.
24. Robertson C, Evans DH, Abrahamse H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B: Bio. 2009; 96(1): 1-8.
25. Roy I, Ohulchanskyy TY, Pudavar HE, Bergey EJ, Oseroff AR, Morgan J, et al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc. 2003;125(26): 7860-7865.
26. Linstead R, Whalley M. 944. Conjugated macrocylces. Part XXII. Tetrazaporphin and its metallic derivatives. J Chem Soc. 1952: 4839-4846.
27. Elvidge J, Linstead R. Conjugated macrocycles. Part XXVII. The formation of tetrazaporphins from imidines. Tribenzotetrazaporphin. J Chem Soc. 1955: 3536-3544.
28. Kopranenkov V, Goncharova L, Luk'yanets E. Phthalocyanines and Related Compounds XVI. Synthesis and Electronic Ansorption Spectra of Amino-, Alkoxy-, and Alkylthio-Substituted Porphyrins. Zh Org Khim. 1979; 15: 1076-1082.
29. Golikov I, Enikolopov N, Goncharova L, Luk’yanets E, Kopranenkov V, Mogilevitch M, et al. USSR Patent No. 871, 1979.
30. Weng J, Ren J. Luminescent quantum dots: a very attractive and promising tool in biomedicine. Curr Med Chem. 2005; 13(8): 897-909.
31. Lovrić J, Cho SJ, Winnik FM, Maysinger D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem & Bio. 2005; 12(11): 1227-1234.
32. Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba Y. Quantum dots as photosensitizers? Nat Biotech. 2004; 22(11): 1360-1361.
33. Yaghini E, Seifalian AM, MacRobert AJ. Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. 2009; 4(3): 353-363.
34. Somers RC, Bawendi MG, Nocera DG. CdSe nanocrystal based chem-/bio-sensors. Chem Soc Rev. 2007; 36(4): 579-591.
35. Tsay JM, Trzoss M, Shi L, Kong X, Selke M, Jung ME, et al. Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates. J Am Chem Soc. 2007; 129(21): 6865-6871.
36. Neuman D, Ostrowski AD, Mikhailovsky AA, Absalonson RO, Strouse GF, Ford PC. Quantum dot fluorescence quenching pathways with Cr (III) complexes. Photosensitized NO production from trans-Cr (cyclam)(ONO) 2+. J Am Chem Soc. 2008; 130(1): 168-175.
37. Derfus AM, Chan WC, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004; 4(1): 11-8.
38. Jiang X, Ahmed M, Deng Z, Narain R. Biotinylated glyco-functionalized quantum dots: synthesis, characterization, and cytotoxicity studies. Biocon Chem. 2009; 20(5): 994-1001.
39. Ye L, Yong K-T, Liu L, Roy I, Hu R, Zhu J, et al. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat Nanotech. 2012;7(7): 453-458.
40. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. The FASEB Journal. 2005; 19(3): 311-330.
41. Ideta R, Tasaka F, Jang W-D, Nishiyama N, Zhang G-D, Harada A, et al. Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer. Nano lett. 2005; 5(12): 2426-2431.
42. Samberg ME, Oldenburg SJ, Monteiro-Riviere NA. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Persp. 2010; 118(3).
43. Handy RD, Shaw BJ. Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health, Risk & Soc. 2007; 9(2): 125-144.