Preparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposite for bone repair application

Document Type : Research Paper


1 Department of Biomaterials, Science and Research Branch, Islamic Azad University, Yazd, Iran

2 Biomaterials Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran

3 Pardis Pajoohesh Fanavaran Yazd, BT center, Yazd Science and Technology Park, Yazd, Iran

4 Department of Stem Cell and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran


Hardystonite (HT) is Zn-modified silicate bioceramics with promising results for bone tissue regeneration. However, HT possesses no obvious apatite formation. Thus, in this study we incorporated Sr and Ti into HT to prepare Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposite and evaluated its in vitro bioactivity with the purpose of developing a more bioactive bone substitute material.

Materials and methods:
The HT and Sr-Ti-HT were prepared by mechanical milling and subsequent heat treatment. Calcium oxide (CaO), zinc oxide (ZnO) and silicon dioxide (SiO2) (all from Merck) were mixed with molar ratio of 2:1:2. The mixture of powders mixture was then milled in a planetary ball mill for 20 h. In the milling run, the ball-to-powder weight ratio was 10:1 and the rotational speed was 200 rpm. After synthesis of HT, 3% nanotitanium dioxide (TiO2, Degussa) and 3% strontium carbonate (SrCO3, Merck) were added to HT and then the mixture was ball milled and calcined at 1150°C for 6 h. Simultaneous thermal analysis (STA), X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Fourier transform infra-red spectroscopy (FT-IR) performed to characterize the powders.
XRD and FT-IR confirmed the crystal phase and silicate structure of HT and TEM images demonstrated the nanostructure of powders. Further, Sr-Ti-HT induced apatite formation and showed a higher human mesenchymal stem cell (hMSCs) adhesion and proliferation compared to HT.
Our study revealed that Sr-Ti-HT with a nanostructured crystal structure of 50 nm, can be prepared by mechanical activation to use as biomaterials for orthopedic applications.


1. De Aza PN, Fernández-Pradas JM, Serra P. In vitro bioactivity of laser ablation pseudowollastonite coating. Biomaterials. 2004; 25(11): 1983-90.
2. El-Ghannam A, Ducheyne P, Shapiro IM. Porous bioactive glass and hydroxyapatite ceramic affect bone cell function in vitro along different time lines. J Biomed Mater Res. 1997; 36(2): 167-80. .
3. Xue W, Liu X, Zheng X, Ding C. In vivo evaluation of plasma-sprayed wollastonite coating. Biomaterials. 2005; 26(17): 3455-60.
4. Wu C. Methods of improving mechanical and biomedical properties of Ca-Si-based ceramics and scaffolds. Expert Rev Med Devices. 2009; 6(3): 237-41.
5. Mohammadi H, Hafezi M, Nezafati N, Heasarki S, Nadernezhad A, Ghazanfari SMH, et al. Bioinorganics in Bioactive Calcium Silicate Ceramics for Bone Tissue Repair: Bioactivity and Biological Properties. J Cera Sci Technol. 2013; 5(1): 1-12.
6. Yamaguchi M, Ehara Y. Zinc decrease and bone metabolism in the femoral-metaphyseal tissues of rats with skeletal unloading. Calcif Tissue Int. 1995; 57(3): 218-23.
7. Yamaguchi M, Inamoto K, Suketa Y. Effect of essential trace metals on bone metabolism in weanling rats: comparison with zinc and other metals' actions. Res Exp Med. 1986; 186(5): 337-42.
8. Yamaguchi M, Oishi H, Suketa Y. Zinc stimulation of bone protein synthesis in tissue culture: Activation of aminoacyl-tRNA synthetase. Biochem Pharmacol. 1988; 37(21): 4075-80.
9. Capuccini C, Torricelli P, Sima F, Boanini E, Ristoscu C, Bracci B, et al. Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: In vitro osteoblast and osteoclast response. Acta Biomater. 2008; 4(6): 1885-93.
10. Fredholm YC, Karpukhina N, Law RV, Hill RG. Strontium containing bioactive glasses: Glass structure and physical properties. J Non-Cryst Solids. 2010; 356(44–49): 2546-51.
11. Harle J, Kim HW, Mordan N, Knowles JC, Salih V. Initial responses of human osteoblasts to sol-gel modified titanium with hydroxyapatite and titania composition. Acta Biomater. 2006; 2(5): 547-56.
12. Vrouwenvelder WC, Groot CG, de Groot K. Better histology and biochemistry for osteoblasts cultured on titanium-doped bioactive glass: bioglass 45S5 compared with iron-, titanium-, fluorine- and boron-containing bioactive glasses. Biomaterials. 1994; 15(2): 97-106.
13. Wu C, Chang J, Zhai W. A novel hardystonite bioceramic: preparation and characteristics. Ceram Int. 2005; 31(1): 27-31.
14. Wu C, Ramaswamy Y, Chang J, Woods J, Chen Y, Zreiqat H. The effect of Zn contents on phase composition, chemical stability and cellular bioactivity in Zn-Ca-Si system ceramics. J Biomed Mater Res B Appl Biomater. 2008; 87(2): 346-53.
15. Zreiqat H, Ramaswamy Y, Wu C, Paschalidis A, Lu Z, James B, et al. The incorporation of strontium and zinc into a calcium-silicon ceramic for bone tissue engineering. Biomaterials. 2010; 31(12): 3175-84.
16. Zhang M, Lin K, Chang J. Preparation and characterization of Sr–hardystonite (Sr2ZnSi2O7) for bone repair applications. Mater Sci Eng C. 2012; 32(2): 184-8.
17. Wu C, Chang J, Xiao Y. Advanced bioactive inorganic materials for bone regeneration and drug delivery: CRC Press; 2013.
18. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006; 27(15): 2907-15.
19. Wu C, Ramaswamy Y, Soeparto A, Zreiqat H. Incorporation of titanium into calcium silicate improved their chemical stability and biological properties. J Biomed Mater Res A. 2008; 86A(2): 402-10.
20. Instrumentation AftAoM. Biological Evaluation of Medical Devices: Tests for Cytotoxicity, in Vitro Methods, ANSI/AAMI/ISO 10993-5:1999: Association for the Advancement of Medical Instrumentation; 1999.
21. Ciapetti G, Cenni E, Pratelli L, Pizzoferrato A. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials. 1993; 14(5): 359-64.
22. Goudouri O, Theodosoglou E, Kontonasaki E, Will J, Chrissafis K, Koidis P, et al. Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering. Mater Res Bull. 2014; 49: 399-404.
23. Halliyal A, Hang KW, Haun MJ. Partially crystallizable glass compositions. Google Patents; 1993.
24. Tavangarian F, Emadi R. Mechanism of nanostructure bredigite formation by mechanical activation with thermal treatment. Mater Lett. 2011; 65(15–16): 2354-6.
25. Misevicius M, Scit O, Grigoraviciute-Puroniene I, Degutis G, Bogdanoviciene I, Kareiva A. Sol–gel synthesis and investigation of un-doped and Ce-doped strontium aluminates. Ceram Int. 2012 ; 38(7): 5915-24.
26. Manso M, Langlet M, Martı́nez-Duart JM. Testing sol–gel CaTiO3 coatings for biocompatible applications. Mater Sci Eng C.  2003; 23(3): 447-50.
27. Agathopoulos S, Tulyaganov DU, Ventura JMG, Kannan S, Saranti A, Karakassides MA, et al. Structural analysis and devitrification of glasses based on the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. J Non Cryst Solids. 2006; 352(4): 322-8.
28. Zhang W, Shen Y, Pan H, Lin K, Liu X, Darvell BW, et al. Effects of strontium in modified biomaterials. Acta Biomater. 2011; 7(2): 800-8.
29. Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica. 1953; 1(1): 22-31.
30. Schrader B. Infrared and Raman spectroscopy: methods and applications: John Wiley & Sons; 2008.
31. Kaushik A, Kumar J, Tiwari M, Khan R, Malhotra B, Gupta V, et al. Fabrication and Characterization of Polyaniline–ZnO Hybrid Nanocomposite Thin Films. J Nanosci Nanotechnol. 2008; 8(4): 1757-61.
32. Langlet M, Coutier C, Fick J, Audier M, Meffre W, Jacquier B, et al. Sol–gel thin film deposition and characterization of a new optically active compound: Er2Ti2O7. Opt Mater. 2001; 16(4): 463-73.
33. Iimori Y, Kameshima Y, Okada K, Hayashi S. Comparative study of apatite formation on CaSiO3 ceramics in simulated body fluids with different carbonate concentrations. J Mater Sci Mater Med. 2005; 16(1): 73-9.
34. Wu C, Chang J, Ni S, Wang J. In vitro bioactivity of akermanite ceramics. J Biomed Mater Res A. 2006; 76(1): 73-80.
35. Mishra VK, Srivastava SK, Asthana BP, Kumar D. Structural and Spectroscopic Studies of Hydroxyapatite Nanorods Formed via Microwave‐Assisted Synthesis Route. J Am Ceram Soc. 2012; 95(9): 2709-15.
36. Ardit M, Cruciani G, Dondi M. The crystal structure of Sr-hardystonite, Sr2ZnSi2O7. Zeitschrift für Kristallographie - Crystalline Materials. 2010; 225(7): 298-301.
37. Li ZY, Lam WM, Yang C, Xu B, Ni GX, Abbah SA, et al. Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials. 2007; 28(7): 1452-60.
38. Xiong K, Shi H, Liu J, Shen Z, Li H, Ye J. Control of the Dissolution of Ca and Si Ions from CaSiO3 Bioceramic via Tailoring Its Surface Structure and Chemical Composition. J Am Ceram Soc. 2013; 96(3): 691-6.
39. Arvanitidis I, Sichen D, Seetharaman S, Sohn HY. The intrinsic thermal decomposition kinetics of SrCO3 by a nonisothermal technique. Metall and Materi Trans B. 1997; 28(6): 1063-8.
40. Maitra S, Chakrabarty N, Pramanik J. Decomposition kinetics of alkaline earth carbonates by integral approximation method. Cerâmica. 2008; 54(331): 268-72.
41. Hench LL. Biomaterials: a forecast for the future. Biomaterials. 1998; 19(16): 1419-23.
42. Wu C, Chang J. A review of bioactive silicate ceramics. Biomed Mater. 2013; 8(3): 032001.
43. Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K. The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res A. 1994; 28(1): 7-15.
44. Wu C, Ramaswamy Y, Kwik D, Zreiqat H. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials. 2007 ; 28(21): 3171-81.
45. Oreffo RC, Cooper C, Mason C, Clements M. Mesenchymal stem cells. Stem Cell Rev. 2005; 1(2): 169-78.
46. Mygind T, Stiehler M, Baatrup A, Li H, Zou X, Flyvbjerg A, et al. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials. 2007; 28(6): 1036-47.
47. Marie PJ, Felsenberg D, Brandi ML. How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporos Int. 2011; 22(6): 1659-67.
48. Yamaguchi M. Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem. 2010; 338(1-2): 241-54.