Field effect transistor nanobiosensors: State-of-the-art and key challenges as point of care testing devices

Document Type : Review Paper

Author

Department of mechanical engineering, Azad university of Tabriz, Tabriz, Iran

Abstract

The existing health care systems focus on treating diseases rather than preventing them. Patients are generally not tested unless physiological symptoms are appeared. When they do get tested, the results often take several days and can be inconclusive if the disease is at an early stage. In order to facilitate the diagnostics process and make tests more readily available for patients, the concept of “point of care testing” (POCT) has been brought up and developed in recent years. Field effect transistors (FET) using nanomaterial as a kind of biosensors have shown great characteristics for detection of a wide range of biomolecules due to their label-free, real time and ultrasensitive properties. In this paper, first of all, the working principles of such devices and recent developments in fabrication methods and surface functionalization are stated, and then some current research trends in field-effect transistor nanobiosensors are highlighted. Eventually key advantages and challenges of FET-based nanobiosensors as POCT devices are discussed as well.

Keywords


[1]  Liang X, Chou SY. Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis. Nano Lett. 2008; 8(5): 1472-1476.
[2]  Platt GW, Damin F, Swann MJ, Metton I, Skorski G, Cretich M, Chiari M. Allergen immobilisation and signal amplification by quantum dots for use in a biosensor assay of IgE in serum. Biosens Bioelectron. 2014; 52: 82-88.
[3]  Sagadevan S, Periasamy M. Recent trends in nanobiosensors and their applications-a review. Rev Adv Mater Sci. 2014; 36: 62-69.
[4]  Zhang A, Lieber CM. Nano-Bioelectronics. Chem Rev. 2015; 116(1): 215–257.
[5]  Patolsky F, Zheng G, Lieber CM. Nanowire sensors for medicine and the life sciences. Nanomedicine(Lond). 2006; 1(1): 51-65.
[6]  Mu L, Chang Y, Sawtelle SD, Wipf M, Duan X, Reed M. Silicon Nanowire Field-Effect Transistors—A Versatile Class of Potentiometric Nanobiosensors. Access, IEEE. 2015; 3: 287-302.
[7]  Nehra A, Singh KP. Current trends in nanomaterial embe- dded field effect transistor-based biosensor. Biosens Bioelectron. 2015; 74: 731-743.
[8]  Patolsky F, Timko BP, Zheng GF, Lieber CM. Nanowire-based nanoelectronic devices in the life sciences. Mrs Bull. 2007; 32(2), 142-149.
[9]  Chen KI, Li BR, Chen YT. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today. 2011; 30; 6(2): 131-154.
[10] Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam DW, Tok AI, Zhang Q, Zhang H. Fabrication of Single and Multilayer MoS2 Film Based Field Effect Transistors for Sensing NO at Room Temperature. Small. 2012; 9; 8(1): 63-67.
[11] Zhou FS, Wei QH. Scaling laws for nano Fet sensors. Nanotechnology. 2008; 19(1): 015504.
[12] Li BR, Chen CC, Kumar UR, Chen YT. Advances in nanowire transistors for biological analysis and cellular investigation. Analyst. 2014; 139(7):1589-1608.
[13] Heller I, Janssens AM, Männik J, Minot ED, Lemay SG, Dekker C. Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 2008; 8(2): 591-595.
[14] Nair PR, Alam, MA, Screening-limited response of   nano- biosensors. Nano Lett. 2008; 8(5): 1281-1285.
[15] Stern E, Wagner R, Sigworth FJ, Breaker R, Fahmy TM, Reed MA. Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett. 2007; 7(11): 3405-3409.
[16] Tang X, Bansaruntip S, Nakayama N, Yenilmez E, Chang YL, Wang Q. Carbon nanotube DNA sensor and sensing mechanism. Nano Lett. 2006; 6(8): 1632-1636.
[17] Sarkar D, Liu W, Xie X, Anselmo AC, Mitragotri S, Banerjee K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano. 2014; 8(4): 3992-4003.
[18] Schwierz F. Graphene-based FETs. In Advanced Semico- nductor Devices & Microsystems (ASDAM), Ninth International Conference, IEEE. 2012; 131-138.
[19] Kannan B, Burghard M. Biosensors based on carbon nano- tubes. Anal Bioanal Chem. 2006; 385( 3): 452-468.
[20] Holzinger M, Le Goff A, Cosnier S. Nanomaterials for biosensing applications: a review. Front Chem. 2014; 2: 63-73.
[21] Aroonyadet N, Wang X, Song Y, Chen H, Cote RJ, Thompson ME, Datar RH, Zhou C. Highly Scalable, Uniform, and Sensitive Biosensors Based on Top-Down Indium Oxide Nanoribbons and Electronic Enzyme-Linked Immunosorbent Assay. Nano Lett. 2015; 15(3): 1943-1951.
[22] Li JY, Chang SP, Chang SJ, Tsai TY. Sensitivity of EGFET pH Sensors with TiO2 Nanowires. ECS Solid State Lett. 2014; 3(10):123-126.
[23] Huang Y, Duan X, Yi Cui CM. Liber. Gallium Nitride Nanowire Nanodevices. Nano Lett. 2002; 2:101-104.
[24] Yano M, Koike K, Mukai K, Onaka T, Hirofuji Y, Ogata KI, Omatu S, Maemoto T, Sasa S. Zinc oxide ion sensitive field effect transistors and biosensors. Physica Status Solidi (a). 2014; 211(9): 2098-2104.
[25] Lin MC, Chu CJ, Tsai LC, Lin HY, Wu CS, Wu YP, Wu YN, Shieh DB, Su YW, Chen CD. Control and detection of organosilane polarization on nanowire field-effect transistors. Nano Lett. 2007; 12, 7(12): 3656-3661.
[26] Liu Z, Zhang D, Han S, Li C, Tang T, Jin W, Liu X, Lei B, Zhou C. Laser ablation synthesis and electron transport studies of tin oxide nanowires. Adv Mater. 2003; 15(20):1754-1757.
[27] Joo, J, Chow BY, Prakash M, Boyden ES, Jacobson J. Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis. Nat Mater. 2011; 10 (8): 596-601.
[28] Patrick N, Wendy U, Stefan B, Jörg, P. K, Friedrich C. S. Polyaniline nanowire synthesis templated by DNA. Nanotechnology. 2004; 15 (11): 1524.
[29] Patolsky F, Zheng G, Lieber CM. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat Protoc. 2006; 1(4):1711-1724.
[30] Alam M A, Nair P. Performance limits of nanobiosensors: elementary considerations and interpretation of experimental data. Nanomed Nanotechnol. 2006; 2 (4): 310-311.
[31] Sheehan PE, Whitman LJ. Detection limits for nanoscale biosensors. Nano Lett. 2005; 5(4):803-807.
[32] Ishikawa FN, Curreli M, Chang HK, Chen PC, Zhang R, Cote RJ, Thompson ME, Zhou C. A calibration method for nanowire biosensors to suppress device-to-device variation. ACS Nano. 2009; 3(12): 3969-3976.
[33] Paul DR, Robeson LM. Polymer nanotechnology: nano- composites. Polymer. 2008; 49(15):3187-3204.
[34] Hangarter CM, Bangar M, Mulchandani A, Myung NV. Conducting polymer nanowires for chemiresistive and FET-based bio/chemical sensors. J Mater Chem. 2010; 20 (16): 3131-3140.
[35] Mulchandani A, Myung NV. Conducting polymer nano- wires-based label-free biosensors. Curr Opin Biotech. 2011; 22(4): 502-508.
[36] Li J, Duan Y, Hu H, Zhao Y, Wang Q. Flexible Nws sensors in polymer, metal oxide and semiconductor materials for chemical and biological detection. Sensor Actuat B Chem. 2015; 219: 65–82.
[37] Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F. Carbon nanomaterials in biosensors: should you use nanotubes or graphene?. Angew Chem Int Ed. 2010; 49(12): 2114-2138.
[38] Makowski M S, Ivanisevic A. Molecular Analysis of Blood with Micro-/Nanoscale Field-Effect-Transistor Biosensors. Small. 2011; 7: 1863–1875.
[39] Ohno Y, Maehashi K, Matsumoto K. Label-free biosensors based on aptamer-modified graphene field-effect transistors. J am Chem Soc. 2010; 132(51): 18012-18013.
[40] Ahn JH, Choi SJ, Han JW, Park TJ, Lee SY, Choi YK. Double-gate nanowire field effect transistor for a biosensor. Nano Lett 2010; 10(8): 2934-2938.
[41] Kozak KR, Su F, Whitelegge JP, Faull K, Reddy S, Farias Eisner R. Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteomics. 2005; 5(17): 4589-4596.
[42] Oikonomopoulou K, Li L, Zheng Y, Simon I, Wolfert RL, Valik D, Nekulova M, Simickova M, Frgala T, Diamandis EP. Prediction of ovarian cancer prognosis and response to chemotherapy by a serum-based multiparametric biomarker panel. Brit J Cancer. 2008; 99(7): 1103-1113.
[43] Kao LT, Shankar L, Kang TG, Zhang G, Tay GK, Rafei SR, Lee CW. Multiplexed detection and differentiation of the Dna strains for influenza A (H1N1 2009) using a silicon-based microfluidic system. Biosens Bioelectron. 2011; 26(5): 2006-2011.
[44] Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol. 2005; 23(10): 1294-1301.
[45] Laborda E, González J, Molina Á. Recent advances on the theory of pulse techniques: A mini review. Electrochem Commun. 2014; 43: 25-30.
[46] Bunimovich YL, Ge G, Beverly KC, Ries RS, Hood L, Heath JR. Electrochemically programmed, spatially selective biofunctionalization of silicon wires. Langmuir. 2004; 20(24): 10630-10638.
[47] Zhang R, Curreli M, Thompson ME. Selective, electrochemically activated biofunctionalization of In2O3 nanowires using an air-stable surface modifier. ACS Appl Mater Interfaces. 2011; 3(12): 4765-4769.
[48] Kelley SO, Mirkin CA, Walt DR, Ismagilov RF, Toner M, Sargent EH. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. Nat Nanotechnol. 2014; 9(12): 969-980.
[49] Huang Y, Liu X, Huang H, Qin J, Zhang L, Zhao S, Chen ZF, Liang H. Attomolar Detection of Proteins via Cascade Strand-Displacement Amplification and Polystyrene Nanoparticle Enhancement in Fluorescence Polarization Aptasensors. Anal Chem. 2015; 87(16): 8107-8114.
[50] Stern E, Vacic A, Rajan NK, Criscione JM, Park J, Ilic BR, Mooney DJ, Reed MA, Fahmy TM. Label-free biomarker detection from whole blood. Nat Nanotechnol. 2010; 5(2): 138-142.
[51] Chang HK, Ishikawa FN, Zhang R, Datar R, Cote RJ, Thompson ME, Zhou C. Rapid, label-free, electrical whole blood bioassay based on nanobiosensor systems. Acs Nano. 2011; 5(12): 9883-9891.
[52] Li C, Curreli M, Lin H, Lei B, Ishikawa FN, Datar R, Cote RJ, Thompson ME, Zhou C. Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. J Am Chem Soc. 2005; 127(36): 12484-12485.
[53] Gardner TJ, Frisbie CD, Wrighton MS. Systems for orthogonal self-assembly of electroactive monolayers on Au and ITO: an approach to molecular electronics. J Am Chem Soc. 1995; 117(26): 6927-6933.
[54] Sheng GU, Xiaodong SH, Benlan LI. Surface organic modification of Fe 3 O 4 nanoparticles by silane-coupling agents. Rare Metals. 2006; 25(6): 426-430.
[55] Corso CD, Dickherber A, Hunt Wd. An investigation of antibody immobilization methods employing organ- osilanes on planar ZnO surfaces for biosensor applications. Biosens Bioelectron. 2008; 24(4): 805-811.
[56] Zhang QL, Du LC, Weng YX, Wang L, Chen HY, Li JQ. Particle-size-dependent distribution of carboxylate adsorption sites on TiO2 nanoparticle surfaces: insights into the surface modification of nanostructured TiO2 electrodes. J Phys Chem B. 2004; 108(39): 15077-15083.
[57] Curreli M, Li C, Sun Y, Lei B, Gundersen MA, Thompson ME, Zhou C. Selective functionalization of In2O3 nanowire mat devices for biosensing applications. J Am Chem Soc. 2005; 127(19): 6922-6923.
[58] Holland GP, Sharma R, Agola JO, Amin S, Solomon VC, Singh P, Buttry DA, Yarger JL. NMR characterization of phosphonic acid capped SnO2 nanoparticles. Chem Mater. 2007; 19(10): 2519-2526.
[59] Guerrero G, Mutin PH, Vioux A. Anchoring of phosphonate and phosphinate coupling molecules on titania particles. Chem Mater. 2001; 13(11): 4367-4373.
[60] Mutin PH, Guerrero G, Vioux A. Hybrid materials from organophosphorus coupling molecules. J Mater Chem. 2005; 15(35-36): 3761-3768.
[61] Kim A, Ah CS, Yu HY, Yang JH, Baek IB, Ahn CG, Park CW, Jun MS, Lee S. Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl Phys Lett. 2007; 91(10):3901-3901.
[62] Wang WU, Chen C, Lin KH, Fang Y, Lieber CM. Label-free detection of small-molecule–protein interactions by using nanowire nanosensors. Proc Natl Acad Sci USA. 2005; 102(9): 3208-3212.
[63] Stern E, Klemic JF, Routenberg DA, Wyrembak PN, Turner-Evans DB, Hamilton AD, LaVan DA, Fahmy TM, Reed MA. Label-free immunodetection with Cmos-compatible semiconducting nanowires. Nature. 2007; 445(7127): 519-522.
[64] Bunimovich YL, Shin YS, Yeo WS, Amori M, Kwong G, Heath JR. Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J Am Chem Soc. 2006; 128 (50): 16323-16331.
[65] Zhang GJ, Zhang G, Chua JH, Chee RE, Wong EH, Agarwal A, Buddharaju KD, Singh N, Gao Z, Balasubramanian N. DNA sensing by silicon nanowire: charge layer distance dependence. Nano Lett. 2008; 8(4): 1066-1070.
[66] Bansal A, Li X, Lauermann I, Lewis NS, Yi SI, Weinberg WH. Alkylation of Si surfaces using a two-step halogenation/Grignard route. J Am Chem Soc. 1996; 118 (30): 7225-7226.
[67] Hurley PT, Nemanick EJ, Brunschwig BS, Lewis NS. Covalent attachment of acetylene and methylacetylene functionality to Si (111) surfaces: Scaffolds for organic surface functionalization while retaining Si-C passivation of Si (111) surface sites. J Am Chem Soc. 2006; 128(31): 9990-9991.
[68] Rohde RD, Agnew HD, Yeo WS, Bailey RC, Heath JR. A non-oxidative approach toward chemically and electrochemically functionalizing Si (111). J Am Chem Soc. 2006; 128(29): 9518-9525.
[69] Binder WH, Sachsenhofer R. ‘Click’chemistry in polymer and materials science. Macromol Rapid Comm. 2007; 28 (1): 15-54.
[70] Binder WH, Sachsenhofer R. ‘Click’chemistry in polymer and material science: an update. Macromol Rapid Comm. 2008; 29(12 13): 952-981.
[71] Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed. 2001; 40(11): 2004-2021.
[72] Huisgen R. 1,3-Dipolar Cycloadditions. Past and Future. Angew Chem Int Ed. 1963; 2(10), 565-598.
[73] Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase:[1, 2, 3]-triazoles by regiospecific copper (I)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem. 2002; 67(9): 3057-3064.
[74] Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper (I) catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed. 2002; 114(14): 2708-2711.
[75] Devaraj NK, Collman JP. Copper Catalyzed Azide Alkyne Cycloadditions on Solid Surfaces: Applications and Future Directions. Qsar Comb Sci. 2007; 26(11 12): 1253-1260.
[76] Gil MV, Arevalo MJ, Lopez O. Click chemistry-what’s in a name? Triazole synthesis and beyond. Synthesis. 2007; 2007(11): 1589-1620.
[77] Choi IS, Chi YS. Surface Reactions On Demand: Electrochemical Control of SAM Based Reactions. Angew Chem Int Ed. 2006; 45(30): 4894-4897.
[78] Wacker R, Schröder H, Niemeyer CM. Performance of antibody microarrays fabricated by either DNA-directed immobilization, direct spotting, or streptavidin–biotin attachment: a comparative study. Anal Biochem. 2004; 330(2): 281-287.
[79] Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T. Global analysis of protein activities using proteome chips. Science. 2001; 293(5537): 2101-2105.
[80] Lo YS, Nam DH, So HM, Chang H, Kim JJ, Kim YH, Lee JO. Oriented immobilization of antibody fragments on Ni-decorated single-walled carbon nanotube devices. ACS Nano. 2009; 3(11): 3649-3655.
[81] Arnold FH. Metal-affinity separations: a new dimension in protein processing. Nat Biotechnol. 1991; 9(2): 151-156.
[82] Schmitt J, Hess H, Stunnenberg HG. Affinity purification of histidine-tagged proteins. Mol Biol Rep. 1993; 18(3): 223-230. 
[84] Liu YC, Rieben N, Iversen L, Sørensen BS, Park J, Nygård J, Martinez KL. Specific and reversible immobilization of histidine-tagged proteins on functionalized silicon nanowires. Nanotechnology. 2010; 21(24): 245105.
[83] Roullier V, Clarke S, You C, Pinaud F, Gouzer G, Schaible D, Marchi-Artzner V, Piehler J, Dahan M. High-affinity labeling and tracking of individual histidine-tagged proteins in live cells using Ni2+ tris-nitrilotriacetic acid quantum dot conjugates. Nano Lett. 2009; 9(3): 1228-1234.
[85] Sigal GB, Bamdad C, Barberis A, Strominger J, Whitesides GM. A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance. Anal Chem. 1996; 68(3): 490-497.
[86] Zhang Y, Li D, Yu M, Ma W, Guo J, Wang C. Fe3O4/PVIM-Ni2+ Magnetic Composite Microspheres for Highly Specific Separation of Histidine-Rich Proteins. ACS Appl Mater Interfaces. 2014; 6(11): 8836-8844.
[87] WONG EL. Recent trends in DNA biosensing technologies. Biophys Rev Lett. 2007; 2(02): 167-189.
[88] Merkoçi A. Biosensing using nanomaterials. John Wiley & Sons; 2009.
[89] Grieshaber D, MacKenzie R, Voeroes J, Reimhult E. Electrochemical biosensors-sensor principles and architectures. Sensors. 2008; 8(3): 1400-1458.
[90] Xiang Y, Lu Y. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat Chem. 2011; 3(9): 697-703.
[91] Qu Q, Zhu Z, Wang Y, Zhong Z, Zhao J, Qiao F, Du X, Wang Z, Yang R, Huang L, Yu Y. Rapid and quantitative detection of Brucella by up-converting phosphor technology-based lateral-flow assay. J Microbiol Meth. 2009; 79(1): 121-123.
[92] https://www.theranos.com.
[93] Holmes EA, Gibbons I, inventors; Theranos, Inc., assignee. Real-time detection of influenza virus. United States patent application US 14/155, 150. 2014.
[94] Christopher P, John as, Hicks j. Point-of-care testing second Edition. 2004.
[95] Loo A, Holmes EA, inventors; Theranos, Inc., assignee. Devices, systems and methods for sample preparation. United States patent application US 14/203,436. 2014.
[96] Gao Z, Agarwal A, Trigg AD, Singh N, Fang C, Tung CH, Fan Y, Buddharaju KD, Kong J. Silicon nanowire arrays for label-free detection of Dna. Anal Chem. 2007; 79(9): 3291-3297.
[97] McAlpine MC, Ahmad H, Wang D, Heath JR. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater. 2007; 6(5): 379-384.
[98] Xu G, Abbott J, Qin L, Yeung KY, Song Y, Yoon H, Kong J, Ham D. Electrophoretic and field-effect graphene for all-electrical DNA array technology. Nat Communs. 2014; 5.