Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles

Document Type : Research Paper


Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran


The use of biogenic selenium nanoparticles for various purposes is going to be an issue of considerable importance; thus, appropriate simple methods should be developed and tested for the synthesis and recovery of these nanoparticles. In this study, a fungus was isolated from a soil sample, identified as Aspergillus terreus and used for extracellular synthesis of selenium nanoparticles (Se NPs). UV–Vis spectroscopy and energy dispersive X-ray spectrum studies were carried out to confirm Se NPs formation within 60 min. Dynamic light scattering and scan electron microscopic methods were also used to characterize both size and shapes of the Se NPs. The results show that spherical particles with average size of 47 nm were formed by adding a culture supernatant of A. terreus to selenium ions solution. This approach appears to be an easy and appropriate method for extracellular synthesis of small Se NPs. Extracellular synthesis of small Se NPs has not been reported yet


  1. Sahoo SK, Parveen S, Panda JJ. The present and future of nanotechnology in human health care. Nanomedicine. 2007; 3 : 20– 31.
  2. Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assuncao M, Rosa J, Baptista PV. Noble metal nanoparticles for biosensing applications. Sensors. 2012; 12: 1657-1687.
  3. De Gusseme B, Sintubin L, Baert L, Thibo E, Hennebel T, Vermeulen G, Uyttrendaele M, Verstraete W, Boon N. Biogenic silver nanoparticles for disinfection of viral contaminated water. Commun Agric Appl Biol Sci. 2011; 76: 73-76.
  4. Shaun MB, Thomas DB, James D, Donghui Z, Seamus C, Farhana SI, Terry JB, Ronald SO. Formation of Tellurium Nanocrystals during Anaerobic Growth of Bacteria That Use Te Oxyanions as Respiratory Electron Acceptors. Appl Environ Microb. 2007; 73 : 2135-2143.
  5. Zare B, Faramarzi MA, Sepehrizadeh Z, Shakibaie M, Rezaie S, Shahverdi AR. Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities Mat Res Bull. 2012; 47: 3719–3725.
  6. Duran N, Marcato PD, Duran M, Yadav A, Gade A, Rai M. Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol. 2011 ; 90: 1609-1624.
  7. Duran N, Seabra AB. Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms. Appl Microbiol Biotechnol. 2012; 95: 275-288.
  8. Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol. 2001; 19: 15-20.
  9. Bahrami K, Nazari P, Sepehrizadeh Z, Zarea B, Shahverdi AR. Microbial synthesis of antimony sulfide nanoparticles and their characterization. Ann Microbiol. 2012 ; 62: 1419-1425.
  10. Mandal D, Bolander M, Mukhopadhyay D, Sarkar G, Mukherjee P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol. 2006; 69: 485-492.
  11. Shakibaie M, Shahverdi AR, Faramarzi MA, Hassanzadeh GR, Rahimi HR, Sabzevari O. Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharm Biol. 2013; 51(1): 58-63
  12. Bahrami K, Nazari P, Sepehrizadeh Z, Zarea B, Shahverdi A. Microbial synthesis of antimony sulfide nanoparticles and their characterization. Annals of Microbiology. 2012 ; 62: 1419-1425.
  13. Bhattacharya D, G. R. Nanothechnology and potential of microorganisms. Crit Rev  Biotechnol. 2005; 25: 199-204.
  14. Shahverdi A-R, Shakibaie M, Nazari P. Basic and Practical Procedures for Microbial Synthesis of Nanoparticles. In: M. Rai,N. Duran editors. Metal Nanoparticles in Microbiology: Springer Berlin Heidelberg. 2011 ;. 177-195.
  15. Kasthuria. j, Veerapandianb. s, N. R. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids and Surfaces B: Biointerfaces. 2009 ; 68: 55-60.
  16. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochemistry. 2007 ; 42: 919-923.
  17. Moshfegh M, Forootanfar H, Zare B, Shahverdi AR, Zarrini G, Faramarzi MA. Biological synthesis of au, ag and au-ag bimetallic nanoparticles by α-amylase. Digest Journal of  Nanomaterials and Biostructures. 2011; 6: 1419-1426.
  18. Chen T, Wong Y-S, Zheng W, Bai Y, Huang L. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids and Surfaces B: Biointerfaces. 2008; 67: 26-31.
  19. Yazdi MH, Mahdavi M, Varastehmoradi B, Faramarzi MA, Shahverdi AR. The Immunostimulatory Effect of Biogenic Selenium Nanoparticles on the 4T1 Breast Cancer Model: an In Vivo Study. Biol Trace Elem Res. 2012 ;149(1): 22-8.
  20. Zhang JS, Gao XY, Zhang LD, Bao YP. Biological effects of a nano red elemental selenium. Biofactors. 2001 ;15: 27-38.
  21. Prasad KS, Patel H, Patel T, Patel K, Selvaraj K. Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids and Surfaces B: Biointerfaces. 2013; 103: 261-266.
  22. Sandhu GS, Kline BC, Stockman L, Roberts GD. Molecular probes for diagnosis of fungal infections. Journal of Clinical Microbiology. 1995; 33: 2913-2919.
  23. Yang LB, Shen YH, Xie AJ, Liang JJ, Zhang BC. Synthesis of Se nanoparticles by using TSA ion and its photocatalytic application for decolorization of cango red under UV irradiation. Mat Res Bull. 2008 ; 43: 572-582.
  24. Thirumurugan D, Dhanaraju MD. Novel Biogenic Metal Nanoparticles for Pharmaceutical Applications. Adv Sci Lett. 2011; 4: 339-348.
  25. Yang F, Jin C, Subedi S, Lee CL, Wang Q, Jiang YJ, Li J, Di Y, Fu DL. Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment. Cancer Treat Rev. 2012 ; 38: 566-579.
  26. Zhang H, Smith JA, Oyanedel-Craver V. The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers. Water Res. 2012 ;46 :691-699.
  27. Wang H, Zhang J, Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: Comparison with selenomethionine in mice. Free Radical Biology & Medicine. 2007;42:1524–1533.
  28. Siddique T, Zhang Y, Okeke BC, Frankenberger Jr WT. Characterization of sediment bacteria involved in selenium reduction. Bioresour Technol. 2006 ;97: 1041-1049.
  29. Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci. 2010; 156 :1-13.
  30. Shakibaie M, Khorramizadeh MR, Faramarzi MA, Sabzevari O, Shahverdi AR. Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinas e-2 expression. Biotechnol Appl Biochem.  2010; 56: 7-15.
  31. Kumar V, Yadav KS. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 2009 ; 84: 151-157.