Magnetic nanobeads: Synthesis and application in biomedicine

Document Type : Review Paper

Authors

1 Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan

2 Department of Physics, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, Pakistan

Abstract

Nanobiotechnology appears to be an emerging science which leads to new developments in the field of medicine. Importance of the magnetic nanomaterials in biomedical science cannot be overlooked. The most commonly used chemical methods to synthesize drugable magnetic nanobeads are co-precipitation, thermal decomposition and microemulsion. However monodispersion, selection of an appropriate coating material for in vivo application, stability and unique physical properties like size, shape and composition of nanobeads remain unsettled challenge. The use of hazardous reagents during chemical synthesis is another impediment for in vivo application of the magnetic nanobeads. The current minireview put forth the pros and cons of chemical and biological synthesis of magnetic nanobeads. We critically focus on chemical and biological methods of synthesis of the magnetic nanobeads along with their biomedical applications and subsequently suggest a suitable synthetic approach for potential biocompatible nanobeads. Biogenic synthesis is proposed to be the best option which generates biocompatible nanobeads. Reducing enzymes present in plants, plant materials or microbes reduce precursor inorganic salts to nano sized materials. These nanomaterials exhibit biomolecules on their surface. The use of biologically synthesized magnetic nanobeads in diagnostics and therapeutics would be safe for human and ecosystem.

Keywords


[1] Sun C, Fang C, Stephen Z, Veiseh O, Hansen S, Lee D, Ellenbogen RG, Olson J,  Zhang M. Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles. Nanomedicine. 2008; 3(4): 495-505.
[2] Wang J, Liu G, Merkoçi A. Particle-based detection of DNA hybridization using electrochemical stripping measurements of an iron tracer. Analyt Chimica Acta. 2003; 482(2): 149-155.
[3] Lewin M, Carlesso N, Tung C-H, Tang X-W, Cory D, Scadden DT, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature biotechnol. 2000; 18(4): 410-414.
[4] Waseem S, Allen MA, Schreier S, Udomsangpetch R, Bhakdi SC. Antibody-conjugated paramagnetic nanobeads: kinetics of bead-cell binding. Int J Mol Sci. 2014; 15(5): 8821-8834.
[5] Xu F, Geiger JH, Baker GL, Bruening ML. Polymer brush-modified magnetic nanoparticles for his-tagged protein purification. Langmuir. 2011; 27(6): 3106-3112.
[6] Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004; 303(5665): 1818-1822.
[7] Sheng-Nan S, Chao W, Zan-Zan Z, Yang-Long H, Venkatraman SS, Zhi-Chuan X. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Ch Phy B. 2014; 23(3): 037503.
[8] Peng S, Wang C, Xie J, Sun S. Synthesis and stabilization of monodisperse Fe nanoparticles. J Am Che Soc. 2006; 128(33): 10676-10687.
[9] Kodama R. Magnetic nanoparticles. J Mag Magc Mat. 1999; 200(1): 359-372.
[10] Hansen MF, Mّrup S. Models for the dynamics of interacting magnetic nanoparticles. J Mag Magc Mat. 1998; 184(3): L262-274.
[11] Dormann J, Fiorani D, Tronc E, Prigogine I, Rice S. Adv Che Phy, Vol. XCVIIIWiley, New York. 1997:283.
[12] Billas IM, Chatelain A, de Heer WA. Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science. 1994; 265(5179): 1682-1684.
[13] Freeman A, Fu C, Ohnishi S, Weinert M, Feder R. Polarized Electrons in Surface Physics. by R Feder (World Scientific, Singapore, 1985) p. 1985;3.
[14] Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir. 2001; 17(10): 2900-2906.
[15] Kodama RH, Berkowitz AE, McNiff Jr E, Foner S. Surface spin disorder in NiFe 2 O 4 nanoparticles. Phy Rev Letters. 1996; 77(2): 394.
[16] Kodama RH, Berkowitz AE. Atomic-scale magnetic modeling of oxide nanoparticles. Phy Rev B. 1999; 59(9): 6321.
[17] Neveu S, Bee A, Robineau M, Talbot D. Size-selective chemical synthesis of tartrate stabilized cobalt ferrite ionic magnetic fluid. J Coll  Interf Sci. 2002; 255(2): 293-298.
[18] Grasset F, Labhsetwar N, Li D, Park D, Saito N, Haneda H, et al. Synthesis and magnetic characterization of zinc ferrite nanoparticles with different environments: Powder, colloidal solution, and zinc ferrite-silica core-shell nanoparticles. Langmuir. 2002; 18(21): 8209-8216.
[19] Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Ame Chel Soc. 2002; 124(28): 8204-8205.
[20] Park S-J, Kim S, Lee S, Khim ZG, Char K, Hyeon T. Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J Ame Che Soc. 2000; 122(35): 8581-8582.
[21] Puntes VF, Krishnan KM, Alivisatos AP. Colloidal nanocrystal shape and size control: the case of cobalt. Science. 2001; 291(5511): 2115-2117.
[22] Chen Q, Rondinone AJ, Chakoumakos BC, Zhang ZJ. Synthesis of superparamagnetic MgFe 2 O 4 nanoparticles by coprecipitation. J Mag Mag Mat. 1999; 194(1): 1-7.
[23] Park J, Lee E, Hwang NM, Kang M, Kim SC, Hwang Y, et al. One nanometer scale size controlled synthesis of monodisperse magnetic Iron oxide nanoparticles. Angewandte Chemie International Edition. 2005; 44(19): 2872-2877.
[24] Karak N, Maiti S. Dendritic polymers: A class of novel material. J Pol Mat. 1997; 14(2): 107-122.
[25] Kim YI, Kim D, Lee CS. Synthesis and characterization of CoFe 2 O 4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Physica B: Condensed Matter. 2003; 337(1): 42-51.
[26] Haneda K, Morrish A. Magnetite to maghemite transformation in ultrafine particles. Le J Physique Colloques. 1977; 38(C1): C1-321-C1-3.
[27] Bee A, Massart R, Neveu S. Synthesis of very fine maghemite particles. J Mag Mag Mat. 1995; 149(1): 6-9.
[28] Ataie A, Harris I, Ponton C. Magnetic properties of hydrothermally synthesized strontium hexaferrite as a function of synthesis conditions. J Mat Sci. 1995; 30(6): 1429-1433.
[29] Ngomsik A-F, Bee A, Draye M, Cote G, Cabuil V. Magnetic nano-and microparticles for metal removal and environmental applications: a review. Comptes Rendus Chimie. 2005; 8(6): 963-970.
[30] Lefebure S, Dubois E, Cabuil V, Neveu S, Massart R. Monodisperse magnetic nanoparticles: preparation and dispersion in water and oils. J Mat Res. 1998; 13(10): 2975-2981.
[31] Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mat. 2004; 3(12): 891-895.
[32] Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett. 2008; 3(11): 397–415.
[33] Ishikawa T, Takeda T, Kandori K. Effects of amines on the formation of â-ferric oxide hydroxide. J Mat Sci. 1992; 27(16): 4531-4535.
[34] Yang J, Liu H, Martens WN, Frost RL. Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J Phy Che C. 2009; 114(1): 111-119.
[35] Cornell R, Schindler P. Infrared study of the adsorption of hydroxycarboxylic acids onل-FeOOH and amorphous Fe (III) hydroxide. Coll Pol Sci. 1980; 258(10): 1171-1175.
[36] Kandori K, Kawashima Y, Ishikawa T. Effects of citrate ions on the formation of monodispersed cubic hematite particles. J Coll Inter Sci. 1992; 152(1): 284-288.
[37] Willis AL, Turro NJ, O’Brien S. Spectroscopic characterization of the surface of iron oxide nanocrystals. Che Mat. 2005; 17(24): 5970-5975.
[38] Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Che Rev. 2004; 104(9): 3893-3946.
[39] Murray C, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Che Soc. 1993; 115(19): 8706-8715.
[40] Peng X, Wickham J, Alivisatos A. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth:”focusing” of size distributions. J Am Che Soc. 1998; 120(21): 5343-5344.
[41] McKenzie LC, Hutchison JE. Green nanoscience: An integrated approach to greener products, processes, and applications. Chimica oggi 22(9): 30-33•
[42] Rajan R, Chandran K, Harper SL, Yun S-I, Kalaichelvan PT. Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials. Ind Crop Prod. 2015; 70: 356-373.
[43] Tsuji T, Watanabe N, Tsuji M. Laser induced morphology change of silver colloids: formation of nano-size wires. Appl Sur Sci. 2003; 211(1): 189-193.
[44] Li Z, Li Y, Qian X-F, Yin J, Zhu Z-K. A simple method for selective immobilization of silver nanoparticles. App Sur Sci. 2005; 250(1): 109-116.
[45] Wang X, Zhuang J, Peng Q, Li Y. A general strategy for nanocrystal synthesis. Nature. 2005; 437(7055): 121-124.
[46] Choi S-H, Zhang Y-P, Gopalan A, Lee K-P, Kang H-D. Preparation of catalytically efficient precious metallic colloids by م-irradiation and characterization. Coll Sur A: Physicochemical and Engineering Aspects. 2005; 256(2): 165-170.
[47] Sepeur S. Nanotechnology: technical basics and applications: Vincentz Network GmbH & Co KG; 2008.
[48] Brock SL. Nanostructures and nanomaterials: synthesis, properties and applications by guozhang cao. J Ame Che Soc. 2004; 126(44): 14679-14685.
[49] Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Bio Med. 2010; 6(2): 257-262.
[50] Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Int Sci. 2009; 145(1): 83-96.
[51] Guo G, Gan W, Luo J, Xiang F, Zhang J, Zhou H. Preparation and dispersive mechanism of highly dispersive ultrafine silver powder. App Sur Sci. 2010; 256(22): 6683-6687.
[52] Begum NA, Mondal S, Basu S, Laskar RA, Mandal D. Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Coll Sur B: Biointerfaces. 2009; 71(1): 113-118.
[53] Li X, Xu H, Chen Z-S, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomat. 2011; 2011: 1-16.
[54] Roy N, Mondal S, Laskar RA, Basu S, Mandal D, Begum NA. Biogenic synthesis of Au and Ag nanoparticles by Indian propolis and its constituents. Coll Sur B: Biointerfaces. 2010; 76(1): 317-325.
[55] Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Coll Interf Sci. 2004;  275(2): 496-502.
[56] Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Coll Interf Sci. 2010; 156(1): 1-13.
[57] Schmidt K. Green nanotechnology: it’s easier than you think. Int Nano. 2007; 1-26
[58] Dahl JA, Maddux BL, Hutchison JE. Toward greener nanosynthesis. Che Rev. 2007; 107(6): 2228-2269.
[59] Hutchison JE. Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano. 2008; 2(3): 395-402.
[60] Raveendran P, Fu J, Wallen SL. Completely “green” synthesis and stabilization of metal nanoparticles. J Ame Che Soc. 2003; 125(46): 13940-13941.
[61] Samadi N, Golkaran D, Eslamifar A, Jamalifar H, Fazeli MR, Mohseni FA. Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of proteus mirabilis isolated from photographic waste. J biomed Nanotech. 2009; 5(3): 247-253.
[62] Sastry M, Ahmad A, Islam Khan M, Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci. 2003; 85(2): 162-170.
[63] Luangpipat T, Beattie IR, Chisti Y, Haverkamp RG. Gold nanoparticles produced in a microalga. J Nanoparticle Res. 2011; 13(12): 6439-6445.
[64] Rajesh S, Raja DP, Rathi J, Sahayaraj K. Biosynthesis of Ag nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. Malvacearum. JBiopest, 5 (Supplementary): 119-128 (2012).
[65] Singaravelu G, Arockiamary J, Kumar VG, Govindaraju K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Coll Sur B: Biointerfaces. 2007; 57(1): 97-101.
[66] Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and Surfaces A: Physicochem Eng Aspects. 2009; 339(1): 134-139.
[67] Dhillon GS, Brar SK, Kaur S, Verma M. Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Critical reviews in biotechnology. 2012; 32(1): 49-73.
[68] Durلn N, Seabra AB. Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms. Appl Microbio Biotech. 2012; 95(2): 275-288.
[69] Gan PP, Li SFY. Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications. Rev Environ Sci Bio/Tech. 2012; 11(2): 169-206.
[70] Gericke M, Pinches A. Biological synthesis of metal nanoparticles. Hydrometallurgy. 2006; 83(1): 132-140.
[71] Korbekandi H, Iravani S, Abbasi S. Production of nanoparticles using organisms. Critic Rev Biotech. 2009; 29(4): 279-306.
[72] Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanoparticle Res. 2008; 10(3): 507-517.
[73] Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Letters. 2001; 1(10): 515-519.
[74] Parsons J, Peralta-Videa J, Gardea-Torresdey J. Use of plants in biotechnology: synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Dev Environ Sci. 2007; 5: 463-485.
[75] Ray S, Sarkar S, Kundu S. Extracellular biosynthesis of silver nanoparticles using the mycorrhizal mushroom Tricholoma crassum (Berk.) Sacc: its antimicrobial activity against pathogenic bacteria and fungus, including multidrug resistant plant and human bacteria. Dig J Nanomater Biostruc. 2011; 6: 1289-1299.
[76] Shankar SS, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog. 2003; 19(6): 1627-1631.
[77] Ankamwar B. Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa. J Che. 2010; 7(4): 1334-1339.
[78] Armendariz V, Herrera I, Jose-yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanoparticle Res. 2004; 6(4): 377-3782.
[79] Beattie IR, Haverkamp RG. Silver and gold nanoparticles in plants: sites for the reduction to metal. Metallomics. 2011; 3(6): 628-632.
[80] Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir. 2003; 19(4): 1357-1361.
[81] Haverkamp R, Marshall A. The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanoparticle Res. 2009; 11(6): 1453-1463.
[82] Iravani S. Green synthesis of metal nanoparticles using plants. Green Che. 2011; 13(10): 2638-2650.
[83] Kandasamy K, Alikunhi NM, Manickaswami G, Nabikhan A, Ayyavu G. Synthesis of silver nanoparticles by coastal plant Prosopis chilensis (L.) and their efficacy in controlling vibriosis in shrimp Penaeus monodon. Appl Nanosci. 2013; 3(1): 65-73.
[84] Kumar V, Yadav SK. Plant mediated synthesis of silver and gold nanoparticles and their applications. J Che Technol Biotechnol. 2009; 84(2): 151-157.
[85] Marshall AT, Haverkamp RG, Davies CE, Parsons JG, Gardea-Torresdey JL, van Agterveld D. Accumulation of gold nanoparticles in Brassic juncea. Int J Phytoremediation. 2007; 9(3): 197-206.
[86] Park Y-S, Hong Y, Weyers A, Kim YS, Linhardt R. Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. Nanobiotechnology, IET. 2011; 5(3): 69-78.
[87] Mukunthan K, Balaji S. Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. Int J Green Nanotechnology. 2012; 4(2): 71-79.
[88] Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013; 31(2): 346-356.
[89] Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X, et al. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J Ame Che Soc. 2004; 126(32): 9938-9939.
[90] Chen LX, Liu T, Thurnauer MC, Csencsits R, Rajh T. Fe2O3 nanoparticle structures investigated by X-ray absorption near-edge structure, surface modifications, and model calculations. J Phy Che B. 2002; 106(34): 8539-8546.
[91] ٹafaّ‎ىk I, ٹafaّ‎ىkovل M. Use of magnetic techniques for the isolation of cells. J Chromatograph B: Biomedical Sciences and Applications. 1999; 722(1-2): 33-53.
[92] Zhao X, Tapec-Dytioco R, Wang K, Tan W. Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Analyt Che. 2003; 75(14): 3476-3483.
[93] Widder KJ, Senyei AE, Scarpelli DG. Magnetic microspheres: a model system for site specific drug delivery in vivo. Exp Bio Med. 1978; 158(2): 141-146.
[94] Berry CC, Curtis AS. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phy D: Applied physics. 2003; 36(13): R198-R206.
[95] Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J Mat Che. 2004; 14(14): 2161-2175.