A short review on Ferrofluids surface modification by natural and biocompatible polymers

Document Type : Review Paper

Author

Sharif University of Technology, Tehran, Iran

Abstract

This paper provides an overview of how the surface properties of ferromagnetic nanoparticles dispersed in fluids is modified by natural and biocompatible polymers. Among common magnetic nanoparticles, magnetite (Fe3O4) and maghemite (g-Fe203) are popular candidates because of their biocompatibility. Natural polymeric coating materials are the most commonly used biocompatible magnetic nanoparticle coatings. In this paper, recent progresses in the methods of ferrofluids surface modification by the common natural polymers consisting of dextran, chitosan, gelatin and starch are reviewed.

Keywords


[1] Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;  26(18): 3995-4021.
[2] Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. J Cheminform. 2009; 40(24): i.
[3] Issa B, Obaidat IM, Albiss BA, Haik Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci. 2013; 14(11): 21266-305.
[4] Schwertmann U, Cornell RM. Iron oxides in the laboratory: preparation and characterization. John Wiley & Sons; 2008.
[5] Hamley IW. Nanotechnology with soft materials. Angew Chem Int Ed Engl. 2003; 42(15): 1692-712.
[6] Sreeja V, Joy PA. Effect of inter–particle interactions on the magnetic properties of magnetite nanoparticles after coating with dextran. Int J Nanotechnol. 2011; 8(10-12): 907-15.
[7] Berry CC, Wells’ S, Charles S, Curtis AS. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials. 2003; 24(25): 4551-7.
[8] Frazier RA, Davies MC, Matthijs G, Roberts CJ, Schacht E, Tendler SJ, Williams PM. In situ surface plasmon resonance analysis of dextran monolayer degradation by dextranase. Langmuir. 1997; 13(26): 7115-20.
[9] Thomas JJ, Rekha MR, Sharma CP. Unraveling the intracellular efficacy of dextran-histidine polycation as an efficient nonviral gene delivery system. Mol Pharm. 2011; 9(1): 121-34.
[10] Berry CC, Curtis AS. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003; 36(13):R198.
[11] Berry CC, Wells’ S, Charles S, Curtis AS. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials. 2003; 24(25): 4551-7.
[12] Easo SL, Mohanan PV. Dextran stabilized iron oxide nanoparticles: synthesis, characterization and in vitro studies. Carbohydr Polym. 2013; 92(1): 726-32.
[13] Feest TG. Low molecular weight dextran: a continuing cause of acute renal failure. Br Med J. 1976; 2(6047): 1300.
[14] Saraswathy A, Nazeer SS, Nimi N, Arumugam S, Shenoy SJ, Jayasree RS. Synthesis and characterization of dextran stabilized superparamagnetic iron oxide nanoparticles for in vivo MR imaging of liver fibrosis. Carbohydr Polym. 2014; 101: 760-8.
[15] Hauser AK, Mathias R, Anderson KW, Hilt JZ. The effects of synthesis method on the physical and chemical properties of dextran coated iron oxide nanoparticles. Mater Chem Phys. 2015; 160: 177-86.
[16] Barbosa-Barros L, Garcیa-Jimeno S, Estelrich J. Formation and characterization of biobased magnetic nanoparticles double coated with dextran and chitosan by layer-by-layer deposition. Colloids Surf A Physicochem Eng Asp. 2014; 450: 121-9.
[17] Chang YC, Chen DH. Adsorption Kinetics and Thermodynamics of Acid Dyes on a Carboxymethylated Chitosan Conjugated Magnetic Nano Adsorbent. Macromol Biosci. 2005; 5(3): 254-61.
[18] Chang YC, Chen DH. Preparation and adsorption properties of monodisperse chitosan-bound Fe 3 O 4 magnetic nanoparticles for removal of Cu (II) ions. J Colloid Interface Sci. 2005; 283(2): 446-51.
[19] Denkba؛ EB, Kiliçay E, Birlikseven C, ضztürk E. Magnetic chitosan microspheres: preparation and characterization. React Funct Polym. 2002; 50(3): 225-32.
[20] Honda H, Kawabe A, Shinkai M, Kobayashi T. Development of chitosan-conjugated magnetite for magnetic cell separation. J. Ferment. Bioeng. 1998; 86(2): 191-6.
[21] Li GY, Jiang YR, Huang KL, Ding P, Chen J. Preparation and properties of magnetic Fe 3 O 4–chitosan nanoparticles. J Alloys Compd s. 2008; 466(1): 451-6.
[22] Song X, Luo X, Zhang Q, Zhu A, Ji L, Yan C. Preparation and characterization of biofunctionalized chitosan/Fe3O4 magnetic nanoparticles for application in liver magnetic resonance imaging. J Magn Magn Mater. 2015; 388: 116-22.
[23] Zamora-Mora V, Fernلndez-Gutiérrez M, San Romلn J, Goya G, Hernلndez R, Mijangos C. Magnetic core–shell chitosan nanoparticles: Rheological characterization and hyperthermia application. Carbohydr Polym. 2014; 102: 691-8.
[24] Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci. 2014; 4(4): 385-92.
[25] Che E, Gao Y, Wan L, Zhang Y, Han N, Bai J, Li J, Sha Z, Wang S. Paclitaxel/gelatin coated magnetic mesoporous silica nanoparticles: Preparation and antitumor efficacy in vivo. Microporous Mesoporous Mater. 2015; 204: 226-34.
[26] Helminger M, Wu B, Kollmann T, Benke D, Schwahn D, Pipich V, Faivre D, Zahn D, Cِlfen H. Synthesis and Characterization of Gelatin Based Magnetic Hydrogels. Adv Funct Mater. 2014; 24(21): 3187-96.
[27] Cole AJ, David AE, Wang J, Galbلn CJ, Yang VC. Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials. 2011; 32(26): 6291-301.
[28] Cole AJ, David AE, Wang J, Galbلn CJ, Hill HL, Yang VC. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials. 2011; 32(8): 2183-93.
[29] Jin C, Haiyan Z, Liping L, Li Z. synthesis and performance of biocompatible core-shell carbon-iron magnetic nanoparticles from starch. Dig J Nanomater Biostruct (DJNB). 2014; 9(1).