[1] Mathieson RHJ, Loos WJ, Verweij J and Sparreboom A. Pharmacology of Topoisomerase I Inhibitors Irinotecan (CPT-11) and Topotecan. Curr Cancer Drug Targets. 2002; 2: 103-123.
[2] Mohajer M, Khameneh B, Tafaghodi M. Preparation and characterization of PLGA nanospheres loaded with inactivated influenza virus, CpG-ODN and Quillaja saponin. IJBMS. 2014;17(9):722-726.
[3] Onishi H, MachidaYandMachidaY. Antitumor properties of irinotecan-containing nanoparticles prepared using poly (DL-lactic acid) and poly (ethylene glycol)-blockpoly (propylene glycol)-block-poly (ethylene glycol). Biol Pharm Bull. 2003; 26: 116-119.
[4] Ebrahimnejad P, Dinarvand R, Sajadi SA, Jafari MR, Movaghari F, Atyabi F. Development and validation of an ion-pair HPLC chropmatography for simultaneous determination of lactone and carboxylate forms of SN-38 in nanoparticles. J Food Drug Anal. 2009; 17: 246-256.
[5] Kunii R, Onishi H, Ueki K, Koyama K, Machida Y. Particle characteristics and biodistribution of camptothecin-loaded PLA/(PEG-PPG-PEG) nanoparticles. Drug deliv. 2008; 15: 3-10.
[6] Ebrahimnejad P, Dinarvand R, Sajadi SA, Atyabi F, Ramezani F, Jafari MR. Preparation and characterization of poly lactide-co-glycolide nanoparticles of SN-38. PDA J Pharm Sci Technol. 2009; 63: 512-520.
[7] Oguma T. Antitumor drug processing topoisomerase I inhibition: applicable separation methods. J Chromatogr B. 2001; 764: 49-458.
[8] Sano K, Yoshikawa M, Hayasaka S, Satake K, Ikegami Y, Yoshida H, Ishikawa T. and Tanabe S. Simple non-ion-paired high-performance liquid chromatographic method for simultaneous quantitation of C and L forms of 14 new camptothecin derivatives. J Chromatogr B. 2003; 795: 25-34.
[9] Esmaeili F, Atyabi F, Dinarvand, R. Preparation and characterization of estradiol-loaded PLGA nanoparticles using homogenization-solvent diffusion method. Daru. 2008; 16: 196-202.
[10] Kim SH, Jeong JH, Chun KW, Park TG, Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir. 2005; 21: 8852-8857.
[11] Ebrahimnejad P, Dinarvand R, Sajadi A, Jaafari MR, Nomani AR, Azizi E, Malekshahi MR, Atyabi F. Preparation and in vitro evaluation of actively targetable nanoparticles for SN-38 delivery against HT29 cell lines. Nanomedicine. 2010; 6: 478-485.
[12] Singh R, Jr JWL. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009; 86: 215–223.
[13] Paruchuri R, Trivedi Sh, Joshi SV, Pavuluri G, Kumar MS. Formulation. Optimization and characterization of irinotecan nanoparticles. IJPCBS. 2012; 2(1): 1-10.
[14] Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, Feron O, Préat V. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. J Control Rel. 2009; 133: 11–17.
[15] Mohammadi A, Esmaeili F, Dinarvand R, Atyabi F, Walker RB. Simultaneous determination of irinotecan hydrochloride and its related compounds by high performance liquid chromatography using ultraviolet detection. Asian J Chem. 2010; 22: 3966-3972.
[16] Peppas NA. Analysis of fickian and non-fickian drug release from polymers. Pharm Acta Helv. 1985; 60:110-111.
[17] Barzegar-Jalali, M. Kinetic analysis of drug release from nanoparticles. J Pharm Sci. 2008; 11(1): 167-177.
[18] Arica B, Lamprecht A. In vitro evaluation of betamethasone-loaded nanoparticles. Drug Dev Ind Pharm. 2005; 31: 19 –24.
[19] Sharma A, Pandey R, Sharma S, Khuller GK. Chemotherapeutic efficacy of poly (DL-lactide-co-glycolide) nanoparticle encapsulated antitubercular drugs at sub-therapeutic dose against experimental tuberculosis. Int J Antimicrob Agents. 2004; 24: 599–604.
[20] Alex R, Bodmeier R. Encapsulation of water-soluble drugs by a modified solvent evaporation method. I. Effect of process and formulation variables on drug entrapment. J Microencaps.1990;7:347-355.
[21] Loveymi BD, Jelvehgari M, Zakeri-Milani P, Valizadeh H. Statistical Optimization of Oral Vancomycin-Eudragit RS Nanoparticles Using Response Surface Methodology. IJPS. 2012; 11 (4): 1001-1012.
[22] Guo S, Zhang X, Gan L, Zhu C, Gan Y. Effect of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) micelles on pharmacokinetics and intestinal toxicity of irinotecan hydrochloride: potential involvement of breast cancer resistance protein (ABCG2). J Pharm Pharmacol. 2010; 62(8): 973-984.
[23] Ricci M, Blasi P, Giovagnoli S, Perioli L, Vescovi C, Rossi C.Leucinostatin-A loaded nanospheres: characterization and in vivo toxicity and efficacy evaluation. Int J Pharm. 2004; 275: 61-72.
[24] Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T, et al. Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest New Drugs. 2012; 30(4): 1621-167.
[25] Tian G, Zheng X, Zhang X, Yin W, Yu J, Wang D, Zhang Z, Yang X, Gu Z, Zhao Y.TPGS-stabilized NaYbF 4: Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. Biomaterials. 2015; 40: 107-116.
[26] Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev. 2011; 63 (3): 170-183.
[27] Liu Y, Schwendeman SP. Mapping microclimate pH distribution inside protein-encapsulated PLGA microspheres using confocal laser scanning microscopy. Mol Pharm. 2012; 9 (5): 1342-1350.
[28] Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013; 65(2): 157-170.
[29] Mosallaei N, Jaafari MR, Hanafi Bojd MY, Golmohammadzadeh S, Malaekeh Nikouei B. Docetaxel loaded solid lipid nanoparticles: Preparation, characterization, in vitro, and in vivo evaluations. J Pharm Sci. 2013; 102(6): 1994-2004.