[1] Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E. In Vivo Toxicity of Silver Nanoparticles and Silver Ions in Zebrafish (Danio rerio). J Toxicol. 2011; 2012: 15-24.
[2] Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC,Yu JI. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnology. 2012; 10(2): 3-14.
[3] Choi O, Deng KK, Kim NJ, Ross L, Surampalli RY, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008; 42(12): 3066-3074.
[4] Mcneil SE. Nanotechnology for the biologist. J Leukoc Biol. 2005; 78(3): 585-595.
[5] Farkas J, Christian P, Urrea JAG, Roos N, Hassellov M, Tollefsen KE,Thomas KV. Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchusmykiss) hepatocytes. Aqua Toxicol. 2010; 96(1): 44-52.
[6] Kenawy ER, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Bio macromolecules. 2007; 8(5): 1359-1384.
[7] Costantini D. Complex trade-offs in the pigeon (Columba livia): egg antioxidant capacity and female serum oxidative status in relation to diet quality. J Comp Physiol B. 2010; 180(5): 731-739.
[8] Huang YW, Wu C, Aronstam RS. Toxicity of Transition Metal Oxide Nanoparticles: Recent Insights from in vitro Studies. Int J Mol Sci. 2010; 3(10): 4842-4859.
[9] Kim S, Choi JE, Choi J, Chung KH. Park K, Yi J, Ryu DY. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. In Vitro Toxicol. 2009; 23(6): 1076-1084.
[10] Negahdary M, Chelongar R, Kabiri Zadeh Sh, Ajdary M. The antioxidant effects of silver, gold, and zinc oxide nanoparticles on male mice in vivo condition. Adv Biomed Res. 2015; 4: 69-81.
[11] Buege JA, Aust SD. Microsomal lipid peroxidation. Method enzymol. 1978; 52: 302-318.
[12] Aebi H, Wyss SR, Scherz B, Skvaril F. Heterogeneity of Erythrocyte Catalase II. Eur J Biochem. 1974; 48(1): 137-145.
[13] Benson AM, Cha YN, Bueding E, Heine HS, Talalay P. Elevation of extrahepatic glutathione S-transferase and epoxide hydratase activities by 2 (3)-tert-butyl-4-hydroxyanisole. Cancer Res. 1979; 39(8): 2971-2978.
[14] Wootton IDP, King EJ, Freeman H. Microanalysis in medical biochemistry. Edinburgh: Churchill Livingstone. 6th ed. 1982.
[15] Markwell MA, Haas SM, Bieber LL, Tolbert NE. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978; 87(1): 206-210.
[16] Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, Fuqiang Y, Tingfei X. Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol. 2009; 9(8): 4924-4932.
[17] Kim S, Ryu DY. Silver nanoparticle induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol. 2013; 33(2):78-98.
[18] Schrand AM, Braydich-Stolle LK, Schlager JJ, Dai L, Hussain SM. Can silver nanoparticles be useful as potential biological labels? Nanotechnology. 2008; 19(23): 35-256.
[19] Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, Lead JR, Stone V, Fernandes TF, Jepson M, Aerle AV, Tyler CA. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci. 2010; 115(2): 521-534.
[20] Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Applied pharmacol. 2010; 242(3): 263-269.
[21] Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. In Vitro Toxicol. 2005; 19(7): 975-983.
[22] Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005; 88(2): 412-419.
[23] Tiwari DK, Jin T, Behari J. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Methods. 2011; 21(1): 13-24.
[24] Madurawe RD, Lin Z, Dryden PK, Lumpkin JA. Stability of Lactate Dehydrogenase in Metal Catalyzed Oxidation Solutions Containing Chelated Metals. Biotechnol Prog. 1997; 13(2): 179-184.
[25] Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF. Metal based nanoparticles and their toxicity assessment.Wiley Interdiscip Rev Nanomed Nanobiotecnol. 2010; 2(5): 544-568.
[26] Breccia JD, Andersson MM, Hatti-Kaul R. The role of poly (ethyleneimine) in stabilization against metal-catalyzed oxidation of proteins: a case study with lactate dehydrogenase. Biochim Biophys Acta. 2002; 1570(3): 165-173