A novel label-free cocaine assay based on aptamer-wrapped single-walled carbon nanotubes


1 Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Pharmaceutical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran

3 Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

4 Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran

5 Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran



This paper describes a selective and sensitive biosensor based on the dissolution and aggregation of aptamer wrapped single-walled carbon nanotubes. We report on the direct detection of aptamer–cocaine interactions, namely between a DNA aptamer and cocaine molecules based on near-infrared absorption at λ807.
Materials and Methods:
First a DNA aptamer recognizing cocaine was non-covalently immobilized on the surface of single walled carbon nanotubes and consequently dissolution of SWNTs was occurred. Vis-NIR absorption (A807nm) of dispersed, soluble aptamer-SWNTs hybrid, before and after incubation with cocaine was measured using a CECIL9000 spectrophotometer.
This carbon nanotube setup enabled the reliable monitoring of the interaction of cocaine with its cognate aptamer by aggregation of SWNTs in the presence of cocaine.
This assay system provides a mean for the label-free, concentration-dependent, and selective detection of cocaine with an observed detection limit of 49.5 nM.


1. Liu J, Lu Y. Non-base pairing DNA provides a new dimension for controlling aptamer-linked nanoparticles and sensors. J Am Chem Soc. 2007; 129: 8634–8643.

2. Liu J, Lu Y. Rational design of "turn-on" allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew Chem Int Ed. 2006; 45: 90–94.

3. Zhang J, Wang L, Pan D, Song S, Boey FYC, Zhang H, Fan C. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small. 2008; 4: 1196–1200.

4. Stojanovic MN, Landry DW. Aptamer-based colorimetric probe for cocaine. J Am Chem Soc. 2002; 124: 9678–9679.

5. Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc. 2006; 128: 3138–3139.

6. Stojanovic MN, Parada P, de, Landry DW. Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc. 2001; 123: 4928–4931.

7. Stojanovic MN, de Parada P, Landry DW. Fluorescent sensors based on aptamer self-assembly. J Am Chem Soc. 2000; 122: 11547–11548.

8. Shlyahovsky B, Di L, Weizmann Y, Nowarski R, Kotler M, Willner I. Spotlighting of cocaine by an autonomous aptamer-based machine. J Am Chem Soc. 2007; 12: 3814–3815.

9. Liu J, Lee JH, Lu Y. Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal Chem. 2007; 79: 4120–4125.

10. Jhaveri SD, Kirby R, Conrad R, Maglott EJ, Bowser M, Kennedy RT, Glick G, Ellington AD. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity. J Am Chem Soc. 2000; 122: 2469–2473.

11. Liss M, Petersen B, Wolfe H, Prohaska E. An aptamer-based quartz crystal protein biosensor. Anal Chem. 2002; 74: 4488–4495.

12. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA Cocaine assay by aptamer–SWNTs conjugate ligands to bacteriophage T4 DNA polymerase. Science. 1990; 249: 505–510.

13. Nutiu R, Li Y. Structure-switching signaling aptamers. J Am Chem Soc. 2003; 125: 4771–4778.

14. Avouris, P. Molecular electronics with carbon nanotubes. Acc Chem Res. 2002; 35: 1026-1034.

15. Bachilo, SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB. Structure-assigned optical spectra of single-walled carbon nanotubes. Science. 2002; 298: 2361-2366.

16. Barone PW, Baik S, Heller DA, Strano MS. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater. 2005; 4: 86-92.

17. Heller DA, Baik S, Eurell TE, Strano MS. Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater. 2005; 17: 2793-2799.

18. Wray S, Cope M, Delpy DT, Wyatt JS, Reynolds EOR. Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim Biophys Acta. 1988; 933: 184-192.

19. Chen H, Yu C, Jiang C, Zhang S, Liu B, Kong J. A novel near-infrared protein assay based on the dissolution and aggregation of aptamer-wrapped single-walled carbon nanotubes. Chem Commun. 2009; 33: 5006-8.

20. Tasis D, Tagmatarchis N, Bianco A, Prato M: Chemistry of carbon nanotubes. Chem Rev. 2006; 106: 1105-1136.

21. Lin Y, Taylor S, Li H, Fernando KAS, Qu L, Wang W, Gu L, Zhou B, Sun YP: Advances toward bioapplications of carbon nanotubes. J Mater Chem. 2004; 14: 527-541.

22. Bahr JL, Tour JM: Covalent chemistry of single-wall carbon nanotubes. J Mater Chem. 2002; 12: 1952-1958.

23. Banerjee S, Hemraj-Benny T, Wong SS: Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater (Weinheim, Germany). 2005; 17: 17-29.

24. Tasis D, Tagmatarchis N, Georgakilas V, Prato M. Soluble carbon nanotubes. Chem Eur J. 2003; 9: 4000-4008.

25. Sun YP, Fu K, Lin Y, Huang W: Functionalized carbon nanotubes: properties and applications. Acc Chem Res. 2002; 35: 1096-1104.

26. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC: Chemistry of Single-Walled Carbon Nanotubes. Acc Chem Res. 2002; 35: 1105-1113.

27. Chou SG, Plentz F, Jiang J, Saito R, Nezich D, Ribeiro HB, Jorio A, Pimenta MA, Samsonidze GG, Santos AP, Zheng M, Onoa GB, Semke ED, Dresselhaus G, Dresselhaus MS: Phonon-Assisted Excitonic Recombination Channels Observed in DNA-Wrapped Carbon Nanotubes Using Photoluminescence Spectroscopy. Phys Rev Lett. 2005; 94: 127402/1-127402/4.

28. Arnold MS, Guler MO, Hersam MC, Stupp SI: Encapsulation of Carbon Nanotubes by Self-Assembling Peptide Amphiphiles. Langmuir. 2005; 21: 4705-4709.

29. Kam NWS, Jessop TC, Wender PA, Dai H: Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc. 2004; 126: 6850-6851.

30. Heller DA, Jeng ES, Yeung TK, Martinez BM, Moll AE, Gastala JB, Strano MS: Optical Detection of DNA Conformational Poly-morphism on Single-Walled Carbon Nanotubes. Science. 2006; 311: 508-511.

31. Cekan P, Jonsson Eض, Sigurdsson ST. Folding of the cocaine aptamer studied by EPR and fluorescence spectroscopies using the bifunctional spectroscopic probe C. Nucleic Acids Res. 2009; 37(12): 3990-3995.

32. Chen H, Yu C, Jiang C, Zhang S, Liu B, Kong J. A novel near-infrared protein assay based on the dissolution and aggregation of aptamer-wrapped single-walled carbon nanotubes. Chem Commun. 2009; 33: 5006-5008.

33. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003; 31(13): 3406-3415.

34. Taghdisi SM, Lavaee P, Ramezani M, Abnous K. Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur J Pharm Biopharm. 2011; 77(2): 200-206.

35. Hamula CLA, Guthrie JW, Zhang H, Li XF, Le XC. Selection and analytical applications of aptamers. Trends Anal Chem. 2006; 7: 681–691.

36. Zhou J, Ellis AV, Kobus H, Voelcker NH. Aptamer sensor for cocaine using minor groove binder based energy transfer. Anal chim acta. 2012; 719: 76-81.

37. Cone EJ, Hillsgrove M, Darwin WD. Simultaneous measurement of cocaine, cocaethylene, their metabolites, and "crack" pyrolysis products by gas chromatography-mass spectrometry. Clinic Chem. 1994;40: 1299–1305.

38. Chinn DM, Crouch DJ, Peat MA, Finkle BS, Jennison TA. Gas chromatography-chemical ionization mass spectrometry of cocaine and its metabolites in biological fluids. J Anal Toxicol. 1980; 4: 37–42.