Preparation, characterization and antimicrobial property of ag+- nano Chitosan/ZSM-5: novel Hybrid Biocomposites

Document Type: Research Paper


1 norganic Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

2 Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran


Objective(s): Binary hybrids of chitosan-zeolite have many interesting applications in separation and bacteriostatic activity.
Materials and Methods: Template free ZSM-5 zeolite was synthesized by hydrothermal method, physical hydrogels of nano chitosan in the colloidal domain were obtained in the absence of toxic organic solvent and then nano chitosan/ZSM-5 hybrid composites with nano chitosan contents of 0.35%, 3.5%, 35% wt.% were prepared. The as prepared hybrid composites were ion-exchanged with Ag cations.
Results: XRD and FT-IR results revealed a good crystalinity of as synthesized template frees ZSM-5 with BET surface area of 307 m2g-1. Presence of chitosan in composites was confirmed by XRD patterns and FT-IR spectroscopic analysis, the chitosan content in composite was obtained with TG analysis. SEM analysis of composites shows that chitosan particles were dispersed within the nanometer scale. The antimicrobial activity of different samples was investigated and the results showed that the Ag+-exchanged samples have the highest antibacterial properties. Cancer cell line A549 cell line were cultured in designated medium treated with Ag+-exchanged samples at the concentration of 0.01 to 0.5 mg/ml. After 24 and 48 hours incubation, the efficacy of Ag+-exchanged samples to treat cancer cell lines were measured by means of cell viability test via MTT assay. Concentrations of 0.05 and 0.1 mg/ml of Ag+-exchanged samples induced a very low toxicity.
Conclusion: These hybrid composite materials have potential applications on tissue engineering and antimicrobial food packaging.


1.  Endo M., Yoshikawa E., Muramatsu N., Takizawa N., Kawai T., Unuma H., Sasaki A., Masano A., Takeyama Y., Kahara T. The removal of cesium ion with natural Itaya zeolite and the ion exchange characteristics. J Chem. Technol Biotechnol. 2013; 88: 1597–1602.

2.  Al-Kinany Mohammed C., Al-Megren Hamid A., Al-Ghilan Eyad A., Edwards Peter P. Tiancun. Xiao. Ahmad. S. Al-Shammari, Saud. A. Al-Drees, Selective zeolite catalyst for alkylation of benzene with ethylene to produce ethylbenzene. Appl Petrochem Res. 2012; 2: 73–83.

3.  Khatamian M., Divband B., Farahmand-zahed F. Synthesis and characterization of Zinc (II)-loaded Zeolite/Graphene oxide nanocomposite as a new drug carrier. Mat Sci Eng C. 2016; 66: 251–258

4.  Margarida L. Castelló Jo. Dweck, Donato A.G. Aranda, Rosana C.L. Pereira, Manoel J. R. Guimarães. Neto. ZSM5 as a Potential Catalyst for Glycerol Pyrolysis, Sustainable Bioenergy Systems. 2014; 4: 61-67.

5.  Shaikh I. R., Shaikh R. A., Shaikh A. A., War J. A., Hangirgekar S. P., Shaikh A. L., Shaikh P. R., Shaikh R.  R. H-ZSM-5 Zeolite Synthesis by Sourcing Silica from the Wheat Husk Ash: Characterization and Application as a Versatile Heterogeneous Catalyst in Organic Transformations including Some Multicomponent Reactions. Catalysts. 2015; 2015: 1-14.

6.  Vu X. H., Eckelt R., Armbruster U., Martin A. High-temperature synthesis of ordered mesoporous aluminosilicates from ZSM-5 nanoseeds with improved acidic properties. nanomaterials. 2014; 4: 712-725.

7.  Liu J., Jiang G., Liu Y., Di J., Wang Y., Zhao Z., Sun Q., Xu C., Gao J., Duan A., Liu J., Wei Y., Zhao Y., Jiang L. Hierarchical Macro-meso-microporous zSM-5 zeolite hollow fibers with highly efficient catalytic cracking capability. Sci. rep. 2014; 2(4): 7276.

8.  Matsuura T., Abe Y., Sato Y., Okamoto K., Ueshige M., Akagawa Y. Prolonged antimicrobial effect of tissue conditioners containing silver-zeolite, J Dent.  1997; 25: 313-371.

9.  Kaali P., Pérez-Madrigal M. M., Strömberg E., Aune R. E., Czél Gy., Karlsson S., The influence of Ag+, Zn2+ and Cu2+ exchanged zeolite on antimicrobial and long term in vitro stability of medical grade polyether polyurethane, Polym. Lett. 2011; 5: 1028–1040.

10. Ferreira L., Fonseca A. M., Botelho G., Almeida- Aguiar C., Neves I C. Antimicrobial activity of faujasite zeolites doped with silver Micropor Mesopor Mat. 2012; 160: 126–132.

11. Belkhair S., Kinninmonth M., Fisher L., Gasharova B., Liauw C. M., Verran J., Mihailova B., Tosheva L. Silver zeolite-loaded silicone elastomers: a multidisciplinary approach to synthesis and antimicrobial assessment. RSC Adv.  2015; 5: 40932-40939.

12. Unalan I. U., Cerri G., Marcuzzo E., Cozzolino C. A., Farris S., Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): current applications and future opportunities in the food packaging sector, RSC Adv.  2014; 4: 29393-29428.

13. Kumar J., Mewar C., Malviya L., Modhera B. performance of nano crystalline H-ZSM-5 as additive in FCC catalyst, IJRET. 2014; 3: 481-485.

14. Li J., Miao P., Li Z., He T., Hydrothermal synthesis of nanocrystalline H[Fe, Al]ZSM-5 zeolites for conversion of methanol to gasoline. Energ Convers Manage. 2015; 93: 259–266.

15. Khatamian M., Divband B., Jodaei A., Degradation of 4-nitrophenol (4-NP) using ZnO nanoparticles supported on zeolites and modeling of experimental results by artificial neural networks Mater Chem Phys. 2012; 134: 31– 37.

16.  Li G., Kikuchi E., Matsukata M., ZSM-5 zeolite membranes prepared from a clear template-free solution Micropor Mesopor Mat. 2003; 60: 225–235.

17. Lassinantti M., Jareman F., Hedlund J., Creaser D., Sterte J. Preparation and evaluation of thin ZSM-5 membranes synthesized in the absence of organic template molecules. Catal Today. 2001; 67: 109–119.

18. Lai R., Gavalas G. R., ZSM-5 membrane synthesis with organic-free mixtures. Micropor Mesopor Mat. 2000; 38: 239-245.

19.  Ghasemi Z., Sari L. V., Younesi H., Kazemian H. Synthesis of nanosized ZSM-5 zeolite using extracted silica from rice husk without adding any alumina source. Appl Nanosci. 2015; 5: 737–745.

20. Kim S. D., Noh S. H., Park J. W., Kim W. J. Organic-free synthesis of ZSM-5 with narrow crystal size distribution using two-step temperature process. Micropor Mesopor Mat. 2006; 92: 181–188.

21. Cheng Y., Liao R.H., Li J.S., Sun X.Y., Wang L.J. Synthesis research of nanosized ZSM-5 zeolites in the absence of organic template. J Mater Process Tech. 2008; 206: 445–452.

22. Cheng Y., Wang L-J., Li J-S., Yang Y-C., Sun X-Y. Preparation and characterization of nanosized ZSM-5zeolites in the absence of organic template. Mater Lett. 2005; 59: 3427–3430.

23. Kim S. D., Noh S. H., Seong K. H., Kim W. J. Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring. Micropor Mesopor Mat. 2004; 72: 185–192.

24. Persson A.E., Schoeman B.J., Sterte J. Colloidal suspensions of ZSM-5 Zeolites. 1995; 15: 611-619.

25. Chao C. Z-L,. Lin Zi-S., Wan H-Q., Hui-Lin, NaA Zeolite Membrane with High Performance Synthesized by Vapor Phase Transformation Method Chinese J Org Chem.  2003; 21: 1430-1432.

26.  Ali M.A., Brisdon B., Thomas W.J. Synthesis, characterization and catalytic activity of ZSM-5 zeolites having variable silicon-to-aluminum ratios. Appl Catal A: General.  2003; 252: 149–162.

27. Kim S. D., Noh S. H., Park J. W., Kim W. J. Organic-free synthesis of ZSM-5 with narrow crystal size distribution using two-step temperature process Micropor Mesopor Mat.  2006; 92: 181–188.

28. Dey K. P., Ghosh S., Naskar M. K. Organic template-free synthesis of ZSM-5 zeolite particles using rice husk ash as silica source. Ceram Int. 2013; 39: 2153–2157.

29. Bansal V., Sharma P. K., Sharma N., Pal O. P., Malviya R. Applications of Chitosan and Chitosan Derivatives in Drug Delivery. Adv Biol Res. 2011; 5 (1): 28-37.

30. Rostamizedeh K., Rezaei S., Abdous M., sadighian S., Arish S. A Hybrid Modeling Approach for Optimization of PMAA– Chitosan–PEG Nanoparticles for Oral Insulin Delivery. RSC Adv. 2015; 5: 69152-69160.

31.  Zhang H., Lv X., Zhang X., Wang H., Deng H., Li Y., Xu X., Huang R., Li X. Antibacterial and hemostatic performance of chitosan–organic rectorite/alginate composite sponge. RSC Adv. 2015; 5: 50523-50531.

32. Tang Z-X., Qian J-Q., Shi L-E. Characterizations of immobilized neutral proteinase on chitosan nano-particles. Process Biochem. 2006; 41: 1193–1197.

33. Sailaja A. K., Amareshwar P., Chakravarty P. Chitosan nanoparticles as a drug delivery system. Pharm Biol. 2010; 1: 474-484.

34. Goy R.C., Britto D. D., Assis O B. G. A Review of the Antimicrobial Activity of Chitosan. Polymer. 2009; 19: 241-247.

35.  Kaur P., Choudhary A., Thakur R. Synthesis of Chitosan-Silver Nanocomposites and their Antibacterial Activity. Sci & Eng Res.2013; 4: 869-872.

36. Alsabagh A. M., Fathy M., Morsi R. E. Preparation and characterization of chitosan/silver nanoparticle/copper nanoparticle/carbon nanotube multifunctional nano-composite for water treatment: heavy metals removal; kinetics, isotherms and competitive studies. RSC Adv. 2015; 5: 55774-55783.

37.  Huang K-S., Sheu Y-R., Chao I-C. Preparation and Properties of Nanochitosan Polym Plast Technol Eng. 2009; 48: 1–5.

38.  Mirhashemi A. H., Bahador A., Kassaee M. Z., Daryakenari G., Sadegh M..  Akhoundi A.  , Sodagar A. Antimicrobial Effect of Nano-Zinc Oxide and Nano-Chitosan Particles in Dental Composite Used in Orthodontics. Med Bacteriol. 2013; 2: 1-10.

39. Wu H., Zheng B., Zheng X., Wang J., Yuan W., Jiang Z. Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell. Power. 2007; 173: 842–852.

40.  Rhim J-W., Hong S-I., Park H-M., Ng P. K. W. Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity. Agric Food Chem. 2006; 54: 5814-5822.

41. Kittur A.A., Kulkarni S.S., Aralaguppi M.I., Kariduraganavar M.Y. Preparation and characterization of novel pervaporation membranes for the separation of water–isopropanol mixtures using chitosan and NaY zeolite Membran. Sci. 2005; 247: 75–86.

42. Chen X., Yang H., Gu Z., Shao Z. Preparation and Characterization of HY Zeolite-Filled Chitosan Membranes for Pervaporation Separation. Appl Polym Sci. 2001; 79: 1144–1149.

43. Liu B., Cao Y., Wang T., Yuan Q. Preparation of Novel ZSM-5 Zeolite-Filled Chitosan Membranes for Pervaporation Separation of Dimethyl Carbonate/Methanol Mixtures. Appl Polym Sci. 2007; 106: 2117–2125.

44. Ahmad A. L., Mohd Nawawi M. G., So L. K. Characterization and Performance Evaluations of Sodium Zeolite-Y Filled Chitosan Polymeric Membrane: Effect of Sodium Zeolite-Y Concentration.  Appl Polym Sci. 2006; 99: 1740–1751.

45.  Khatamian M., Irani M. Preparation and Characterization of Nanosized ZSM-5 Zeolite Using Kaolin and Investigation of Kaolin Content, Crystallization Time and Temperature Changes on the Size and Crystallinity of Products. Iran Chem Soc. 2009; 6: 187-194.

46. Sun H., Lu L., Chen X., Jiang Z. Pervaporation dehydration of aqueous ethanol solution using H-ZSM-5 filled chitosan membranes. Separ Purif Technol. 2008; 58: 429–436.

47. Tang Z-X., Shi L-E., Qing J., Neutral lipase from aqueous solutions on chitosan nano-particles Biochem Eng. 2007; 34: 217–223.

48.  Sivakami M.S., Gomathi T., Venkatesan J., Jeong H-S., Kim S-K., Sudhaa P.N. Preparation and characterization of nano chitosan for treatment wastewaters Int J Biol Macromol. 2013; 57: 204–212.

49. Vijayalakshmi K., Gomathi T., Sudha P. N. Preparation and characterization of nanochitosan/sodium alginate/microcrystalline cellulose beads Der Pharmacia Lettre. 2014; 6(4): 65-77.