Use of gold nanoparticles in MAGIC-f gels to 18 MeV photon enhancement

Document Type : Research Paper

Authors

1 Department of Radiology, Faculty of Paramedical, Hamadan University of Medical Sciences, Hamadan, Iran

2 Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Abstract

Objective(s): Normoxic MAGIC-f polymer gels are established dosimeters used for three dimensional dose quantifications in radiotherapy. Nanoparticles with high atomic number such as gold are novel radiosensitizers used to enhance doses delivered to tumors. The aim of this study was to investigate the effect of gold nanoparticles (GNPs) in enhancing percentage depth doses (PDDs) within the MAGIC-f gel exposed to linear accelerator (linac) high energy photon beams.
Materials and Methods: The MAGIC-f gel was fabricated based on its standard composition with some modifications. The PDDs in tubes containing the gel were calculated by using a common Monte Carlo code (Geant4) followed by experimental verifications. Then, GNPs with an average diameter of 15 nm and a concentration of 0.1 mM were embedded in the gel, poured into falcon tubes and irradiated with 18 MeV beams of an Elekta linac. Finally, similar experimental and Monte Carlo (MC) calculations were made to determine the effect of using GNPs on some dosimetric parameters of interest.
Results: The results of experimental measurements and simulated MC calculations showed a dose enhancement factor (DEF) of 1.12±0.08 and 1.13±0.04, respectively due to the use of GNPs when exposed to 18 MeV linac energies.
Conclusion: The results indicated that the fabricated MAGIC-f gel could be recommended as a suitable tool for three dimensional dosimetric investigations at high energy radiotherapy procedures wherein GNPs are used.

Keywords


1.Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 2004; 49(18): 309-315.
2.Yih TC, Wei C, Hammad B. Modeling and characterization of a nanoliter drug-delivery MEMS micropump with circular bossed membrane. Nanomedicine: NBM. 2005; 1(2): 164-175.
3.Kawasaki ES, Player A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine: NBM. 2005; 1(2): 101-109.
4.Hirsch L, Stafford R, Sershen N, Halas N, Hazle J, West J. Nanoshell-assisted tumor ablation using near infrared light under magnetic resonance guidance. Proc Natl Acad Sci. 2003; 100: 113549-113554.
5.Liu Y, Zhang P, Feifei l, Jin X, Li J, Chen W, Li Q. Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics. 2018; 8(7): 1824–1849.
6.Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano lett. 2005; 5(4): 709-711.
7.Mesbahi A. A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep Pract Oncol Radiother. 2010; 15(6): 176-180.
8.Mukherjee P, Bhattacharya R, Bone N, Lee YK, Patra CR, Wang S, Lu L, Secreto C. Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis. J Nanobiotechnology. 2007; 5(1): 4.
9.Praetorius NP, Mandal TK. Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul. 2007; 1(1): 37-51.
10.Cho J, Gonzalez-Lepera C, Manohar N, Kerr M, Krishnan S, Cho SH. Quantitative investigation of physical factors contributing to gold nanoparticle-mediated proton dose enhancement. Phys Med Biol. 2016;61(6):2562-2581.
11.Geng F, Xing JZ, Chen J, Yang R, Hao Y, Song K, Kong B. Pegylated glucose gold nanoparticles for improved in-vivo bio-distribution and enhanced radiotherapy on cervical cancer. J Biomed Nanotechnol. 2014;10(7):1205-1216.
12.Taggart LE, McMahon SJ, Currell FJ, Prise KM, Butterworth KT. The role of mitochondrial function in gold nanoparticle mediated radiosensitisation. Cancer Nanotechnol. 2014; 5(1): 5.
13.Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano lett. 2006; 6(4): 662-668.
14.Leung MK, Chow JC, Chithrani BD, Lee MJ, Oms B, Jaffray DA. Irradiation of gold nanoparticles by x‐rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med phys. 2011; 38(2): 624-631.
15.Zhang SX, Gao J, Buchholz TA, Wang Z, Salehpour MR, Drezek RA. Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a monte carlo simulation study. Biomed Microdevices. 2009; 11(4): 925-933.
16.Alkhatib A, Watanabe Y, Broadhurst JH. The local enhancement of radiation dose from photons of MeV energies obtained by introducing materials of high atomic number into the treatment region. Med phys. 2009; 36(8): 3543-3548.
17.Kirkby C, Ghasroddashti E. Targeting mitochondria in cancer cells using gold nanoparticle‐enhanced radiotherapy: A Monte Carlo study. Med phys. 2015; 42(2): 1119-1128.
18.Khan FM, Gibbons JP. Khan’s the physics of radiation therapy: Lippincott Williams & Wilkins; 2014.
19.Morris KN, Weil MD, Malzbender R. Radiochromic film dosimetry of contrast-enhanced radiotherapy (CERT). Phys Med Biol. 2006; 51(22): 5915-2925.
20.Robar JL, Riccio SA, Martin M. Tumour dose enhancement using modified megavoltage photon beams and contrast media. Phys Med Biol. 2002; 47(14): 2433-2449.
21.Boudou C, Troprès I, Rousseau J, Lamalle L, Adam J-F, Estève F. Polymer gel dosimetry for synchrotron stereotactic radiotherapy and iodine dose-enhancement measurements. Phys Med Biol. 2007; 52(16): 4881-4892.
22.Gastaldo J, Boudou C, Lamalle L, Troprès I, Corde S, Sollier A. Normoxic polyacrylamide gel doped with iodine: response versus X-ray energy. Eur J Radiol. 2008; 68(3): S118-S120.
23.Abtahi S. Characteristics of a novel polymer gel dosimeter formula for MRI scanning: dosimetry, toxicity and temporal stability of response. Phys Med. 2016; 32(9): 1156-1161.
24.Lee HJ, Roed Y, Venkataraman S, Carroll M, Ibbott GS. Investigation of magnetic field effects on the dose–response of 3D dosimeters for magnetic resonance–image guided radiation therapy applications. Radiother Oncol. 2017; 125(3): 426-432.
25.De Deene Y, De Wagter C, De Neve W, Achten E. Artefacts in multi-echo T2 imaging for high-precision gel dosimetry: I. Analysis and compensation of eddy currents. Phys Med Biol. 2000; 45(7): 1807-1823.
26.Marques T, Schwarcke M, Garrido C, Zucolot V, Baffa O, Nicolucci P, editors. Gel dosimetry analysis of gold nanoparticle application in kilovoltage radiation therapy. JPCS; 2010: IOP Publishing.
27.Rahman WN, Wong CJ, Ackerly T, Yagi N, Geso M. Polymer gels impregnated with gold nanoparticles implemented for measurements of radiation dose enhancement in synchrotron and conventional radiotherapy type beams. Australas Phys Eng Sci Med. 2012; 35(3): 301-309.
28.Alqathami M, Blencowe A, Yeo UJ, Doran SJ, Qiao G, Geso M. Novel multicompartment 3-dimensional radiochromic radiation dosimeters for nanoparticle-enhanced radiation therapy dosimetry. Int J Radiat Oncol Biol Phys. 2012; 84(4): e549-e555.
29.Sobczak-Kupiec A, Malina D, Zimowska M, Wzorek Z. Characterization of gold nanoparticles for various medical application. Dig J Nanomater Biostruct. 2011; 6(2): 803-808.
30.Fernandes JP, Pastorello BF, de Araujo DB, Baffa O. Formaldehyde increases MAGIC gel dosimeter melting point and sensitivity. Phys Med Biol. 2008; 53(4): N53-58.
31.Pavoni J, Pike T, Snow J, DeWerd L, Baffa O. Tomotherapy dose distribution verification using MAGIC‐f polymer gel dosimetry. Med phys. 2012; 39(5): 2877-2884.
32.McJury M, Oldham M, Cosgrove V, Murphy P, Doran S, Leach M. Radiation dosimetry using polymer gels: methods and applications. Br J Radiol. 2000; 73(873): 919-929.
33.De Deene Y, Van de Walle R, Achten E, De Wagter C. Mathematical analysis and experimental investigation of noise in quantitative magnetic resonance imaging applied in polymer gel dosimetry. Sig  Process. 1998; 70(2): 85-101.
34.Sheikh‐Bagheri D, Rogers D, Ross CK, Seuntjens JP. Comparison of measured and Monte Carlo calculated dose distributions from the NRC linac. Med phys. 2000; 27(10): 2256-2266.
35.Khosravi H, Hashemi B, Mahdavi S, Hejazi P. Effect of gold nanoparticles on prostate dose distribution under Ir-192 internal and 18 MV external radiotherapy procedures using gel dosimetry and monte carlo method. J Biomed Phys Eng. 2015; 5(1): 3-14.
36.McNamara A, Kam W, Scales N, McMahon S, Bennett J, Byrne H. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol. Phys Med Biol. 2016; 61(16): 5993-6010.
37.Rehman MU, Jawaid P, Kondo T. Dual Effects of Nanoparticles on Radiation Therapy: as Radiosensitizers and Radioprotectors. REM. 2016; 5: 40-45.
38. https://geant4.web.cern.ch.