Nanoparticles development for pulmonary vaccination: Challenges and opportunities

Document Type : Review Paper

Authors

1 Department of Microbiology, Faculty of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran

2 Department of Chemical and Life Science engineering, Virginia commonwealth University, USA

3 Fuzionaire Inc., 2002 Timberloch Place, Suite 200, The Woodlands, TX 77380

Abstract

Pulmonary vaccination is unique immune system protection treatment for the respiratory tract. Lungs contain large surface area for interaction with antigens. Nanoparticles as efficient drug carriers have been used for pulmonary vaccination. These structures contribute to the process either by encapsulating, dissolving, surface adsorbing or chemically attaching the active ingredients. Development of pulmonary vaccines via sub-micron particles has been investigated in this study. The nanoparticles deposited on the respiratory mucus, based on their size and charge, are either locally trapped or diffuse freely. Therefore, different mechanisms of particle deposition are defined based on the particle size and surface charges. Advantages and disadvantages of nanoparticles preparation methods as they pertain to pulmonary vaccine applications are comprehensively depicted. The adverse side effects of nanoparticles encountering immune cells is also discussed. Finally, the side effects and challenges of nano-pulmonary vaccines are discussed, offering a series practical suggestion for further industrial development and manufacturing of nanoparticle-empowered pulmonary vaccines.

Keywords


1. Wouter FT, Kersten GF, Frijlink HW, Hinrichs WL, de Boer AH, Amorij JP. Pulmonary Vaccine Delivery: A Realistic Approach?. J Aerosol Med Pulm Drug Deliv. 2012; 25(5): 249-260.
2. Kunda NK, Somavarapu S, Gordon SB, Hutcheon GA, Saleem IY. Nanocarriers Targeting Dendritic Cells for Pulmonary Vaccine Delivery. Pharm Res. 2013; 30(2): 325-341.
3. Shiehzadeh F, Tafaghodi M. Dry Powder form of Polymeric Nanoparticles for Pulmonary Drug Delivery, Current Pharm Design. 2016; 22(17): 2549-2560.
4. Catherine A, Rahhal TB, Robbins GR, Kai MP, Shen TW, Luft JC, DeSimone JM. Nanoparticle surface charge impacts distribution, uptake and lymph node trafficking by pulmonary antigen-presenting cells. Nanomedicine: Nanotech Bio and Medicine. 2016; 12(3): 677-687.
5. Fytianos K, Drasler B, Blank F, von Garnier C, Seydoux E, Rodriguez-Lorenzo L, Petri-Fink A, Rothen-Rutishauser B. Current in vitro approaches to assess nanoparticle interactions with lung cells, Nanomedicine. 2016; 11(18): 2457-69.
6. Orga PL, Faden H, Welliver RC. Vaccination Strategies for Mucosal Immune Responses. Clin Microbiol Rev. 2001; 14(2): 430-45.
7. Shakya AK, Chowdhury MYE, Tao W, Gill HS. Mucosal Vaccine Delivery: Current State and a Pediatric Perspective. J Control Release. 2016; 240: 394-413.
8. Thakur A, Foged C, Nanoparticles for mucosal vaccine delivery. Nanoeng Biomat Adv Drug Delivery. 2020; 603-646.
9. Muralidharan P, Mallory E, Malapit M, Hayes DJ, Mansour HM. Inhalable PEGylated Phospholipid Nanocarriers and PEGylated Therapeutics for Respiratory Delivery as Aerosolized Colloidal Dispersions and Dry Powder Inhalers. Pharmaceutics. 2014; 6(2): 333-53.
10. Meenach SA, Anderson KW, Zach Hilt J, McGarry RC, Mansour HM. Characterization and aerosol dispersion performance of advanced spray-dried chemotherapeutic PEGylated phospholipid particles for dry powder inhalation delivery in lung cancer. Eur J Pharm Sci 2013: 49(4): 699-711.
11. Osman R, Kan PL, Awad G, Mortada N, El-Shamy AE, Alpar O. Spray dried inhalable ciprofloxacin powder with improved aerosolisation and antimicrobial activity. Int J Pharm. 2013; 449(1-2):44-58.
12. El-Sherbiny IM, Charles Smyth HD. Controlled release pulmonary administration of curcumin using swellable biocompatible microparticles. Mol Pharm. 2012; 9(2): 269-280.
13. Chono S, Suzuki H, Togami K, Morimoto K. Efficient drug delivery to lung epithelial lining fluid by aerosolization of ciprofloxacin incorporated into PEGylated liposomes for treatment of respiratory infections. Drug Dev Ind Pharm, 2011; 37(4): 367-372.
14. Insulin inhalation—Pfizer/Nektar therapeutics: Hmr 4006, inhaled peg-insulin—Nektar, PEGylated insulin—Nektar. Drugs R&D. 2004; 5(3): 166-170.
15. Padmanabh HP, Development of adjuvanted influenza vaccines for pulmonary delivery. University of Gronigen, PhD thesis. 2014.
16. Audouy SAL, van der Schaaf G, Hinrichs WL, Frijlink HW, Wilschut J, Huckriede A. Development of a dried influenza whole inactivated virus vaccine for pulmonary immunization. Vaccine. 2011; 29(26): 4345-52.
17. Wee JLK., Scheerlinck JP, Snibson KJ, Edwards S, Pearse M, Quinn C, Sutton P. Pulmonary delivery of ISCOMATRIX influenza vaccine induces both systemic and mucosal immunity with antigen dose sparing. Mucosal Immunol. 2008; 1(6): 489-96.
18. C.L. Hardy, J.S. Lemasurier, R. Mohamud, J. Yao, S.D. Xiang, J.M. Rolland, R.E. O’Hehir, M. Plebanski. Differential uptake of nanoparticles and microparticles by pulmonary APC subsets induces discrete immunological imprints. J. Immunol. 2013; 191: 5278–5290.
19. Li S.D, Huang L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim. Biophys. Acta 1788. 2009: 2259–2266.
20. Petros R.A., DeSimone J.M., Strategies in the design of nanoparticles for therapeutic applications, Nat. Rev. Drug Discov. 2010: 9: 615–627.
21. Verhoef JJF, Groot AM, van Moorsel M, Ritsema J, Beztsinna N, Maas C, Schellekens H. Iron nanomedicines induce Toll-like receptor activation, cytokine production and complement activation. Biomat. 2017; 119 :68–77.
22. S.P. Vyas, P.N. Gupta. Implication of nanoparticles/microparticles in mucosal vaccine delivery. Expert Rev. Vaccines. 2007; 6: 401–418.
23. Makadia H.K, Siegel S.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Pol. (Basel). 2011;3: 1377–1397.
24. Jiao Y, Pang X, Liu M, Zhang B, Li L, Zhai G. Recent progresses in bioadhesive microspheres via transmucosal administration. Colloids Surf. B: Biointerfaces. 2016; 140: 361–372.
25. Bhide Y, Tomar J, Wei D, Vries-Idema J, W. Frijlink H, Huckriede A,Wouter L. J. H. Pulmonary delivery of influenza vaccine formulations in cotton rats: site of deposition plays a minor role in the protective efficacy against clinical isolate of H1N1pdm virus. Drug Delv. 2018; 25(1): 533–545.
26. Lu D, J Hickey A. Pulmonary vaccine delivery. Expert Rev Vaccines. 2007; 6(2):213-226.
27. Hellfritzsch M, Scherlie R. Mucosal Vaccination via the Respiratory Tract. Pharmaceutics. 2019; 11(8): 375.
28. Tynea AS, Chan JG, Shanahan ER, Atmosukarto I, Chan HK, Britton WJ, West NP. TLR2-targeted secreted proteins from Mycobacterium tuberculosis are protective as powdered pulmonary vaccines, Vaccine, 2013; 31(40):4322-4329.
29. Berlin JM, Tour JM. Development of novel drug delivery vehicles, Nanomedicine. 2010; 5(10):1487-1489.
30. Wu M, Zhao H, Li M, Yue Y, Xiong S, Xu W. Intranasal vaccination with mannosylated chitosan formulated DNA vaccine enables robust IgA and cellular response induction in the lungs of mice and improves protection against pulmonary mycobacterial challenge. Front Cell Infect Microbiol. 2017; 7: 445.
31. Dhaka S, Renu S, Ghimire S, Shaan Lakshmanapp Y, Hogshead BT, Feliciano-Ruiz N, Lu F, HogenEsch H, Krakowka S, Lee CW, Renukaradhya G.J. Mucosal immunity and protective efficacy of intranasal inactivated influenza vaccine is improved by chitosan nanoparticle delivery in pigs. Front. Immunol. 2018 ;9: 934.
32. Rose F, Wern J E, Gavins F, Andersen P, Follmann F, Foged C, A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522, J. Control. Release 271 2018; 271: 88–97.
33. Cheung R.C, Ng T.B, Wong J.H, Chan W.Y. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar. Drugs. 2015; 13: 5156–5186.
34. Riaz Rajoka MS, Zhao L, Mehwish HM, Wu Y, Mahmood S. Chitosan and its derivatives: synthesis, biotechnological applications, and future challenges. Appl. Microbiol. Biotechnol. 2019.
35. Tafaghodi M, Saluja V, Kersten G F, Kraan H, Slutter B, Amorij J P, Jiskoot W. Hepatitis B surface antigen nanoparticles coated with chitosan and trimethyl chitosan: impact of formulation on physicochemical and immunological characteristics. Vaccine. 2012; 30: 5341–5348.
36. Marasini N, Ghaffar K A, Giddam A K, Batzloff M R, Good M F, Skwarczynski M, Toth I. Highly immunogenic trimethyl chitosan-based delivery system for intranasal lipopeptide vaccines against group A streptococcus. Curr. Drug Deliv. 2017; 14:701–708.
37. Nevagi R J, Khalil Z J, Hussein W M, Powell J, M R , Capon R J, Good M F, Skwarczynski M, Toth I. Polyglutamic acid-trimethyl chitosan-based intranasal peptide nano-vaccine induces potent immune responses against group A streptococcus. Acta Biomater. 2018; 80: 278–287.
38. Okamoto S, Matsuura M, Akagi T, Akashi M, Tanimoto T, Ishikawa T, Takahashi M, Yamanishi K, Mori Y. Poly (gamma-glutamic acid) nano-particles combined with mucosal influenza virus hemagglutinin vaccine protects against influenza virus infection in mice. Vaccine. 2009; 27: 5896–5905.
39. Chowdhury M Y E, Kim T H, Uddin M B, Kim J H, Hewawaduge C Y, Ferdowshi Z, Sung M H, Kim C J, Lee J S. Mucosal vaccination of conserved sM2, HA2 and cholera toxin subunit A1 (CTA1) fusion protein with poly gamma-glutamate/chitosan nanoparticles (PC NPs) induces protection against divergent influenza subtypes. Vet. Microbiol. 2017; 201: 240–251.
40. Mummert M E, Immunologic roles of hyaluronan. Immunol Res. 2005; 31: 189–206.
41. Singh M., Briones M, O’Hagan D T. A novel bioadhesive intranasal delivery system for inactivated influenza vaccines. J. Control. Release. 2001; 70: 267–276.
42. Fan Y, Sahdev P, Ochy L J, Akerberg J, Moon J, Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens. J. Control Release. 2015; 208: 121–129.
43. Nochi T, Yuki Y, Takahashi H, Sawada S, Mejima M, Kohda T, Harada N, Kong I G, Sato A, Kataoka N, Tokuhara D, Kurokawa S, Takahashi Y. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat. Mater. 2010; 9: 572–578.
44. Fukuyama Y, Yuki Y, Katakai Y, Harada N, Takahashi H, Takeda S, Mejima M, Joo S, Kurokawa S, Sawada S, Shibata H, Park E J, Fujihashi K, Briles D E, Yasutomi Y, Tsukada H, Akiyoshi K, Kiyono H. Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques Mucosal Immunol. 2015; 8: 1144–1153.
45. Nagatomo D, Taniai M, Ariyasu H, Taniguchi M, Aga M, Ariyasu T, Ohta T, Fukuda S, Cholesteryl pullulan encapsulated TNF-alpha nanoparticles are an effective mucosal vaccine adjuvant against influenza virus, Biomed Res Int, 2015: 2015: 471-468.
46. Blank F, Fytianos K, Seydoux E, Fink A, Von Garnier C, Lorenzo L, Fink A, Von Garnier C, Rothen-Rutishauser B. Interaction of biomedical nanoparticles with the pulmonary immune system. J Nanobiotechnol. 2017; 15(6).
47. Hu K, Elvander M, Merza M, Åkerblom L, Brandenburg A, Morein B. The immunostimulating complex (ISCOM) is an efficient mucosal delivery system for respiratory syncytial virus (RSV) envelope antigens inducing high local and systemic antibody responses. Clin Exp Immunol. 1998; 113(2): 235–243.
48. Tak W. Mak, Mary E. Saunders and Bradley D. Jett, Primer to the Immune Response. 2nd Ed. 2014.
49. Fujita Y, Taguchi H. Nanoparticle-Based Peptide Vaccines, Book Chap. 8, Micro and Nanotechnology in Vaccine Development, 2017:149-170.
50. Helgeby A, C Robson N, M. Donachie A, Beackock-Sharp H, K Lo¨vgren,K Scho¨n, Mowat A, Y. Lycke N. The Combined CTA1-DD/ISCOM Adjuvant Vector Promotes Priming of Mucosal and Systemic Immunity to Incorporated Antigens by Specific Targeting of B Cells. J Immonul. 2006: 176(6):3697-706.
51. Abdelkader H, Ismail S, Kamal A, G. Alany R, Design and Evaluation of Controlled-Release Niosomes and Discomes for Naltrexone Hydrochloride Ocular Delivery, J Pharm Sci, 2011: 100(5): 1833-1846.
52. V. Li A, J. Moon J, Abraham W, Suh H, Elkhader J, A. Seidman M. Generation of Effector Memory T Cell–Based Mucosal and Systemic Immunity with Pulmonary Nanoparticle Vaccination. Sci Trans Medicine. 2013; 204(5): 130-204.
53. Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem Rev. 2015; 115(19):11109-11146.
54. Kunda N, M. Alfagih I, Rachel Dennison S, M. Tawfeek H, Somavarapu S, A. Hutcheon G, Y. Saleem I. Bovine Serum Albumin Adsorbed PGA-co-PDL Nanocarriers for Vaccine Delivery via Dry Powder Inhalation. Pharm Res. 2015; 32:1341–1353.
55. Muttil P, Prego C, Garcia-Contreras L, Pulliam B, Fallon JK, Wang C, Hickey AJ, Edwards D. Immunization of Guinea pigs with novel Hepatitis B antigen as nanoparticle aggregate powders administered by the pulmonary Route. The AAPS J. 2010; 12(3):330-337.
56. Ross KA. Synthetic nanoparticle-based vaccines against respiratory pathogens, Lova State University, PhD thesis, 2013.
57. Kunda N K, Alfagih IM, Miyaji EN, Figueiredo DB, Gonçalves VM, Ferreira DM, Dennison SR, Somavarapu S, Hutcheon GA, Saleem IY. Pulmonary dry powder vaccine of pneumococcal antigen loaded nanoparticles. Int J Pharm. 2015; 495(2):903-912.
58. Ozeki T, Tagami T, Drug/polymer nanoparticles prepared using unique spray nozzles and recent progress of inhaled formulation. Asian J of Pharm Sci. 2014; 9(5): 236-243.
59. Sarei F, Dounighi NM, Zolfagharian H, Khaki P, Bidhendi SM. Alginate Nanoparticles as a Promising Adjuvant and Vaccine Delivery System. Indian J Pharm Sci. 2013; 75(4):442-9.
60. Bivas-Benita M, van Meijgaarden KE, Franken KL, Junginger HE, Borchard G, Ottenhoff TH, Geluk A. Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine. 2004: 22(13-14):1609-15.
61. Blank F, Stumbles P, von Garnier C, Opportunities and challenges of the pulmonary route for vaccination, Expert Opin Drug Deliv, 2011: 8(5):547-63.
62. Jorquera PA, Tripp RA. Synthetic Biodegradable Microparticle and Nanoparticle Vaccines against the Respiratory Syncytial Virus. Vaccines. 2016; 4(4):45.
63. Lennart Buske SD. Chitosan as adjuvant and particle forming ex-cipient in a nano-in-microparticulate dry powder for nasal and pulmonary vaccine delivery. PhD thesis, Kiel University, 2014.
64. Silva A S, Tavares TM, Aguiar-Ricardo A. Sustainable strategies for nano-in-micro particle engineering for pulmonary delivery. J Nanopart Res. 2014; 16:2602.
65.Wang J, Huang X, Li FR. Impaired dendritic cell functions in lung cancer: a review of recent advances and future perspectives. Cancer Commun (Lond). 2019; 39(1):43.
66. Hammad H, Lambrecht BN. Lung dendritic cell migration. Adv Immunol. 2007; 93:256-278.
67. Von Garnier C. Nanoparticles in the Respiratory Tract: Modulation of Antigen-Presenting Cell Function, J Environ Immunol Toxicol. 2014.
68. Sou T. New developments in dry powder pulmonary vaccine delivery. Trends in Biotechnol. 2011.
69. Hugh DC, (Eds.). Pulmonary drug delivery, medicine for inhalation Chap. 2010; 1:181.
70. F Tonnis W, J Lexmond A, W Frijlink H, Boer A, LJ Hinrichs W. Devices and formulations for pulmonary vaccination, Expert Opinion on Drug Deliv. 2013; 10(10), 1383-1397.
71. Lu D, J Hickey A. Pulmonary vaccine delivery. Expert Rev. Vaccines. 2007; 6(2): 213-226.
72. Saleem I, Petkar K, Somavarapu S. Rationale for Pulmonary Vaccine Delivery: Formulation and Device Considerations, book Chap 19th, In Micro and Nano Technologies, Micro and Nanotechnology in Vaccine Development, William Andrew Publishing. 2017.
73. Roberts RA, Shen T, Allen IC, Hasan W, DeSimone JM, Ting JP. Analysis of the Murine Immune Response to Pulmonary Delivery of Precisely Fabricated Nano- and Microscale Particles. PLos one. 2013; 8(4): 1-13.