Magnesium oxide nanoparticle effects on the central nervous system biochemical parameters and memory deficit induced by a sleep-deprivation

Document Type : Research Paper


1 Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran


Objective(s): Magnesium plays an important role in the correct functioning of the nervous system and it is hardly able to cross the blood-brain barrier. Magnesium oxide nanoparticles (MgO NPs) can affect memory in animal models.  The current study aimed to evaluate the mechanism of action and efficacy of MgO NP in comparison to conventional magnesium oxide (C MgO) in learning and memory at the sleep-deprived model of rats.
Materials and Methods: Adult male Wistar rats (200±20 gr) were divided into control, MgO NP and C MgO (1, 5, and 10 mg/kg) groups. Short-term and long-term memories were evaluated by the passive avoidance test. The Columns-in-water method was used to induce sleep deprivation (SD) for 72 h in all groups. Oxidative stress markers including glutathione, glutathione peroxidase, Malone di-aldehyde, total antioxidant capacity, catalase activity, superoxide dismutase, and brain derived neurotropic factor (BDNF) were assessed in the hippocampus of all animals. Also, brain and hippocampus magnesium levels were evaluated in all groups. 
Results: MgO NP (5 and 10 mg/kg) significantly improved short and long-term memory impairment-induced by SD (P<0.05). Hippocampus magnesium levels increased in all groups treated by MgO NP. There were no significant changes in the hippocampal oxidant and anti-oxidant factors level and BDNF in MgO NP and C MgO treated groups. 
Conclusion: Probably MgO NP could entrance the brain and the gathering of magnesium ions in the hippocampus enhanced memory. So that memory improvement can be related to the increasing magnesium level in the hippocampus that this needs more research. 


1.    Moreira KM, Ferreira TL, Hipolide  DC, Fornari RV, Tufik S, Oliveira MG. Modafinil prevents inhibitory avoidance memory deficit induced by sleep deprivation in rats. Sleep. 2010; 33(7):990-993.
2.     Ota SM, Moreira KDM, Suchecki D, Oliveira MGM, Tiba PA. Lithium Prevents REM Sleep Deprivation-Induced Impairments on Memory Consolidation. Sleep. 2013; 36(11): 1677–1684
3.    Lee Y, Park J, Kim SM, Nam K, Lee W, Cho H, Han IO. Sleep deprivation impairs learning and memory by decreasing protein O-GlcNAcylation in the brain of adult zebrafish. FASEB J. 2020; 34: 853–864. 
4.    Raven F, Heckman PR, Havekes R, Meerlo P. Sleep deprivation‐induced impairment of memory consolidation is not mediated by glucocorticoid stress hormones. J Sleep Res. 2020; 29(5): e12972. 
5.    Yuan RK, Lopez MR, Ramos-Alvarez MM, Normandin ME, Thomas AS, Uygun DS, Cerda VR, Grenier AE, Wood MT, Gagliardi CM, Guajardo H. Differential effect of sleep deprivation on place cell representations, sleep architecture, and memory in young and old mice. Cell  Rep. 2021; 35(11): 109-234.
6.    Nabaee E, Kesmati M, Shahriari A, Khajehpour L, Torabi M. Cognitive and hippocampus biochemical changes following sleep deprivation in the adult male rat. Biomed  Pharm. 2018; 104: 69–76. 
7.    Abbasi B, Kimiagar M, Mohammad-Shirazi M, Sadeghniiat K, Rashidkhani B, Karimi N, Doaee S. Effect of magnesium supplementation on physical activity of overweight or obese insomniac elderly subjects: A double-blind randomized clinical trial. Zahedan. J  Res Med Sci. 2013; 15(3): 14-19.
8.    Kesmati M, Tamoradi N, Rezaie A, Shahriyari A, Torabi M. Evaluating behavioral, biochemical and histopathological effects of the MgO nanoparticles administration on memory in the Alzheimer-like model of male rat. Nanomed J. 2021; 8(2): 140-146. 
9.    Abbasi B, Kimiagar M, Sadeghniiat K, Shirazi MM, Hedayati M, Rashidkhani B. The effect of magnesium supplementation on primary insomnia in elderly: A double-blind placebo-controlled clinical trial. J Res Med Sci. 2012; 17(12): 1161-1169. 
10.    Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Bio Med Res Int. 2013; 1-15. 
11.    Abdolahzadeh Dashty M, Kesmati M, Khajehpour L, Najafzadeh Varzi H. The preventative role of MgO nanoparticles in amnesia induced by morphine in the mouse. Iranian. Vet J 2014; 10 (3): 55-65. 
12.    Sargholi Nootarki Z, Kesmati M, Poormehdi BM. Comparing the Pre and Post-training Administration of Magnesium Oxide Nanoparticles on Passive Avoidance Memory in Adult Male Mice. Arak Med Uni J. 2015; 18(100): 46-54.
13.    Abumaria N, Yin B, Zhang L, Li X, Chen T, Descalzi G, Zhao L, Ahn M, Luo L, Ran C, Zhuo M, Liu G. Effects of elevation of brain magnesium on fear conditioning, fear extinction, and synaptic plasticity in the infralimbic prefrontal cortex and lateral amygdala. J Neurosci. 2011; 31(42): 14871–14881. 
14.    Ventriglia M, Zanardini R, Bonomini C, Zanetti O, Volpe D, Pasqualetti P, Gennarelli M,  Bocchio-Chiavetto L Serum brain-derived neurotrophic factor levels in different neurological diseases. Bio Med Res Int. 2013; 2013: 901082.
15.    Weinstein G, Beiser AS, Choi SH, Preis SR, Chen TC, Vargas D, Au R, Pikula A, Wolf PA, DeStefano AL, Vasan RS,  Seshadri S. Serum brain-derived neurotrophic factor and the risk for dementia: the Framingham heart study. JAMA Neurol. 2014; 71(1): 55-61. 
16.    Gulec M, Ozkol H, Selvi Y, Tuluce Y, Aydin A, Besiroglu L, Ozdemir PG. Oxidative stress in patients with primary insomnia. Pro. Neuro-Psychopharmacol. Biol Psy. 2012; 37(2): 247-251.
17.    Pochwat B, Sowa-Kucma M, Kotarska K, Misztak P, Nowak G, Szewczyk B. Antidepressant-like activity of magnesium in the olfactory bulbectomy model is associated with the AMPA/BDNF pathway. Psychopharmacol (Berl).2015; 232(2): 355-367. 
18.    Alzoubi KH, Khabour OF, Salah HA, Abu Rashid EB. The combined effect of sleep deprivation and the western diet on spatial learning and memory: the role of BDNF and oxidative stress. J Mol Neurosci. 2013; 50: 124–133. 
19.    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 7(72): 248-254. 
20.    Benzie I, Strain J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power: The FRAP Assay”. Anal Biochem. 1996; 239: 70-76. 
21.    Kono Y. Generation of superoxide radical during auto-oxidation of hydroxylamine and an assay for superoxide dismutase. Arc. Biochem. Biophysics. 1978; 186: 189–195. 
22.    Koroluk M, Ivanova L, Mayorova I, Tokorev W. Method of determination of catalase activity. Lab Tech. 1988; 1: 16-19. 
23.    Ellman GL.  Tissue sulfhydryl groups. Arch. Biochem. Biophysics.  1995; 82(1): 70-77. 
24.    Placer ZA, Cushman LL, Johnson BC. Estimation of the product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem. 1966; 16(2): 359-364. 
25.    Nikalje PA. Nanotechnology and its Applications in Medicine. Med Chem. 2015; 5: 81-89. 
26.    Kesmati M, Torabi M, Teymuri ZH, Malekshahi Nia H. The interaction between the anxiolytic effects of magnesium oxide nanoparticles and exercise in the adult male rat. Nanomed J. 2014; 1(5): 324-330.
27.    Mickley GA, Hoxha N, Luchsinger JL, Rogers MM, Wiles NR. Chronic dietary magnesium-L-threonate speeds extinction and reduces spontaneous recovery of a conditioned taste aversion. Pharmacol. Biochem Behav. 2013; 106: 16–26. 
28.    Veronese N, Zurlo  A, Solmi M, Luchini C, Trevisan C, Bano G, Manzato E, Sergi G, Rylander R. Magnesium Status in Alzheimer’s Disease A Systematic Review.  American. J Alzh Dis Demen. 2016; 31(3): 208-213.
29.    Westermaier T, Stetter C, Kunze E, Willner N, Raslan F, Vince GH, Ernestus R.  Magnesium treatment for neuroprotection in ischemic diseases of the brain. Exp Trans Str Med. 2013; 5: 6. 
30.    Binette A, Blouin S, Ardilouze A, Pasquier JC. Neuroprotective effects of antenatal magnesium sulfate under inflammatory conditions in a Sprague-Dawley pregnant rat model.  J Mat-Fet Neon Med. 2017; 30(14): 1715-1720. 
31.    Mathangi DC, Shyamala R, Subhashini AS.  Effect of REM sleep deprivation on the antioxidant status in the brain of Wistar rats. Ann Neurosci. 2012; 19(4): 161–164. 
32.    Coenen AML, Van Luijtelaar EL. Stress-induced by three procedures of deprivation of paradoxical sleep. Physiol Behav. 1985; 35 (4): 501–504. 
33.    Fletcher KL, Whitley BN, Treidel LA, Thompson D, Williams A, Noguera JC.  Voluntary locomotor activity mitigates oxidative damage associated with isolation stress in the prairie vole (Microtus ochrogaster). Biol Let. 2015; 11(7): 20150178. 
34.    Torabi-Nami M, Nasehi M, Razavi S, Zarrindast RM. Aversive memory, anxiety-related behaviors, and serum neurochemical levels in a rat model of labored sleep loss. Shiraz E-Med J. 2014; 15(3): 1-10. 
35.    Bachnas MA, Mose JC, Effendi JS, Andonotopo W. Influence of antenatal magnesium sulfate application on cord blood levels of the brain-derived neurotrophic factor in premature infants. J Per Med. 2014; 42(1): 129-134. 
36.    Hairston IS, Peyron C, Denning DP, Ruby NF, Flores J, Sapolsky RM, Heller HC, O’Hara BF.  Sleep deprivation effects on growth factor expression in neonatal rats: a potential role for BDNF in the mediation of delta power.  J Neurophysiol. 2004; 91(4): 1586-1595.