Recent advances in nanocarriers containing Bromelain: In vitro and in vivo studies

Document Type : Review Paper


1 School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA

3 Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

4 Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

5 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

6 Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

7 Department of Drug and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran


Medicinal products of plant origin have long been considered the most affordable and accessible sources to treat different health problems. Bromelain (Br) is a mixture of enzymes derived from pineapple (Ananas comosus L.) with a wide field of applications including medicine, health, food, and cosmetics. Br has various therapeutic effects, such as antimicrobial, antioxidant, anticancer, wound healing, burn treatment, pain relief, anti-inflammatory, inhibition of platelet aggregation, and fibrinolytic activity. On the other hand, most proteins are susceptible to denaturation and structural changes that may reduce their activities. Encapsulation of drug molecules into nanoparticles (NPs) could increase their stability, bioavailability, and overcome other challenges in drug delivery and therapy. This review aimed to highlight various Br nano-formulations approaches, toward the improvement of Br therapeutic efficiency. 


1.    Pavan R, Jain S, Shraddha, Kumar A. Properties and therapeutic application of bromelain: a review. Biotechnol Res Int. 2012;2012:976203.
2.    Ataide JA, Gérios EF, Mazzola PG, Souto EB. Bromelain-loaded nanoparticles: A comprehensive review of the state of the art. Adv Colloid Interface Sci. 2018;254:48-55.
3.    Rani A, Pannuru V. Unanticipated behaviour of sorbitol towards the stability and activity of stem bromelain: An outlook through biophysical techniques. Process Biochem. 2016;51(8):1028-1039.
4.    Silva C, Martins M, Jing S, Fu J, Cavaco-Paulo A. Practical insights on enzyme stabilization. Crit Rev Biotechnol. 2018;38(3):335-350.
5.    Li J, Li M, Tang J, Li X, Zhang H, Zhang Y. Resonance light-scattering spectrometric study of interaction between enzyme and MPA-modified CdTe nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2008;70(3):514-518.
6.    Hami Z. A Brief Review on Advantages of Nano-based Drug Delivery Systems. Ann Mil Health Sci Res. 2021; 19(1):e112274.
7.    Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med. 2005;172(12):1487-1490.
8.    Parodi A, Haddix SG, Taghipour N, Scaria S, Taraballi F, Cevenini A, et al. Bromelain surface modification increases the diffusion of silica nanoparticles in the tumor extracellular matrix. ACS nano. 2014;8(10):9874-9883.
9.    Bagga P, Ansari TM, Siddiqui HH, Syed A, Bahkali AH, Rahman MA, et al. Bromelain capped gold nanoparticles as the novel drug delivery carriers to aggrandize effect of the antibiotic levofloxacin. EXCLI J. 2016; 15:772-780.
10.    Khan S, Rizvi SMD, Avaish M, Arshad M, Bagga P, Khan MS. A novel process for size controlled biosynthesis of gold nanoparticles using bromelain. Mater Lett. 2015;159:373-376.
11.    de Sousa IP, Cattoz B, Wilcox MD, Griffiths PC, Dalgliesh R, Rogers S, et al. Nanoparticles decorated with proteolytic enzymes, a promising strategy to overcome the mucus barrier. Eur J Pharm Biopharm. 2015;97:257-264.
12.    Samaridou E, Karidi K, de Sousa IP, Cattoz B, Griffiths P, Kammona O, et al. Enzyme-functionalized PLGA nanoparticles with enhanced mucus permeation rate. Nano Life. 2014;4(04):1441013.
13.    Ataide JA, Gérios EF, Cefali LC, Fernandes AR, Teixeira MdC, Ferreira NR, et al. Effect of Polysaccharide Sources on the Physicochemical Properties of Bromelain–Chitosan Nanoparticles. Polymers. 2019;11(10):1681.
14.    Kammona O, Kiparissides C. Recent advances in nanocarrier-based mucosal delivery of biomolecules. J Control Release. 2012;161(3):781-794.
15.    Lü JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9(4):325-341.
16.    Nagpal K, Singh SK, Mishra DN. Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull. 2010;58(11):1423-1430.
17.    Ahmed R, Tariq M, Ali I, Asghar R, Khanam PN, Augustine R, et al. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol. 2018;120:385-393.
18.    Mala T, Anal AK. Protection and Controlled Gastrointestinal Release of Bromelain by Encapsulating in Pectin–Resistant Starch Based Hydrogel Beads. Front Bioeng Biotechnol. 2021;9.
19.    Brito AM, Oliveira V, Icimoto MY, Nantes-Cardoso IL. Collagenase activity of bromelain immobilized at gold nanoparticle interfaces for therapeutic applications. Pharmaceutics. 2021;13(8):1143.
20.    Singer AJ, Toussaint J, Chung WT, McClain SA, Clark RA, Asculai E, et al. Development of a contaminated ischemic porcine wound model and the evaluation of bromelain based enzymatic debridement. Burns. 2018;44(4):896-904.
21.    Wickham N, Alexander KS, Fletcher A, O’Boyle C. Successful treatment of mixed depth flame burns using enzymatic debridement with Nexobrid™ in a patient with aggressive systemic sclerosis (scleroderma). Scars Burn Heal. 2019;5:2059513118821563.
22.    Hirche C, Almeland SK, Dheansa B, Fuchs P, Governa M, Hoeksema H, et al. Eschar removal by bromelain based enzymatic debridement (Nexobrid®) in burns: European consensus guidelines update. Burns. 2020;46(4):782-796.
23.    Da Elisa Silva López R. Debridement applications of bromelain: a complex of cysteine proteases from pineapple. Adv Biotechnol Microbiol. 2017;3:555624.
24.    Wu S-Y, Hu W, Zhang B, Liu S, Wang J-M, Wang A-M. Bromelain ameliorates the wound microenvironment and improves the healing of firearm wounds. J Surg Res. 2012;176(2):503-509.
25.    Hikisz P, Bernasinska-Slomczewska J. Beneficial Properties of Bromelain. Nutrients. 2021;13(12):4313.
26.    Ghensi P, Cucchi A, Bonaccorso A, Ferroni L, Gardin C, Mortellaro C, et al. In vitro effect of bromelain on the regenerative properties of mesenchymal stem cells. J Craniofac Surg. 2019;30(4):1064-1067.
27.    Singer AJ, Taira BR, Anderson R, McClain SA, Rosenberg L. The effects of rapid enzymatic debridement of deep partial-thickness burns with Debrase® on wound reepithelialization in swine. J Burn Care Res. 2010;31(5):795-802.
28.    Bayat S, Amiri N, Pishavar E, Kalalinia F, Movaffagh J, Hashemi M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life sci. 2019;229:57-66.
29.    Miranda ÍKSPB, Santana FR, Camilloto GP, Detoni CB, Souza FVD, de Magalhães Cabral-Albuquerque EC, et al. Development of membranes based on carboxymethyl cellulose/acetylated arrowroot starch containing bromelain extract carried on nanoparticles and liposomes. J Pharm Sci. 2021;110(6):2372-2378.
30.    Bayat S, Zabihi AR, Farzad SA, Movaffagh J, Hashemi E, Arabzadeh S, et al. Evaluation of debridement effects of bromelain-loaded sodium alginate nanoparticles incorporated into chitosan hydrogel in animal models. Iran J Basic Med Sci. 2021;24(10):1404.
31.    Rachmawati H, Sulastri E, Immaculata Iwo M, Safitri D, Rahma A, editors. Bromelain encapsulated in self assembly nanoemulsion exhibits better debridement effect in animal model of burned skin. J Nano Res; 2016: 40; 158-166.
32.    Hasannasab M, Nourmohammadi J, Dehghan MM, Ghaee A. Immobilization of bromelain and ZnO nanoparticles on silk fibroin nanofibers as an antibacterial and anti-inflammatory burn dressing. Int J Pharm. 2021;610:121227.
33.    Ataide JA, Cefali LC, Figueiredo MC, Braga LEdO, Ruiz ALTG, Foglio MA, et al. In vitro performance of free and encapsulated bromelain. Sci Rep. 2021;11(1):1-10.
34.    Wang X, He L, Wei B, Yan G, Wang J, Tang R. Bromelain-immobilized and lactobionic acid-modified chitosan nanoparticles for enhanced drug penetration in tumor tissues. Int J Biol Macromol. 2018;115:129-142.
35.    Nasiri R, Almaki JH, Idris A, Nasiri M, Irfan M, Majid FAA, et al. Targeted delivery of bromelain using dual mode nanoparticles: Synthesis, physicochemical characterization, in vitro and in vivo evaluation. RSC advances. 2017;7(64):40074-40094.
36.    Bhatnagar P, Patnaik S, Srivastava AK, Mudiam MK, Shukla Y, Panda AK, et al. Anti-cancer activity of bromelain nanoparticles by oral administration. J Biomed Nanotechnol. 2014;10(12):3558-3575.
37.    Bhatnagar P, Pant AB, Shukla Y, Chaudhari B, Kumar P, Gupta KC. Bromelain nanoparticles protect against 7, 12-dimethylbenz [a] anthracene induced skin carcinogenesis in mouse model. Eur J Pharm Biopharm. 2015;91:35-46.
38.    Karimian Rad F, Ramezani M, Mohammadgholi A. Physicochemical Properties of Bromelain Adsorption on Magnetic Carbon Nanoparticles and in Vitro Cytotoxicity on Breast Cancer Cells. Herb Med J. 2020;5(4): 11-19.
39.    Montazeri A, Ramezani M, Mohammadgholi A. Investigation the Effect of Encapsulated Bromelain Enzyme in Magnetic Carbon Nanotubes on Colorectal Cancer Cells. Jundishapur J Nat Pharm Prod. 2021;16(3): e108796 .
40.    Gaspani L, Limiroli E, Ferrario P, Bianchi M. In vivo and in vitro effects of bromelain on PGE2 and SP concentrations in the inflammatory exudate in rats. Pharmacology. 2002;65(2):83-86.
41.    Bhui K, Prasad S, George J, Shukla Y. Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway. Cancer lett. 2009;282(2):167-176.
42.    Hou RC-W, Chen Y-S, Huang J-R, Jeng K-CG. Cross-linked bromelain inhibits lipopolysaccharide-induced cytokine production involving cellular signaling suppression in rats. J Agric Food Chem. 2006;54(6):2193-2198.
43.    Subramaniam V, Gardner H, Jothy S. Soluble CD44 secretion contributes to the acquisition of aggressive tumor phenotype in human colon cancer cells. Exp Mol Pathol Suppl. 2007;83(3):341-346.
44.    Makrydimas G, Zagorianakou N, Zagorianakou P, Agnantis N. CD44 family and gynaecological cancer. In vivo (Athens, Greece). 2003;17(6):633-640.
45.    Seligman B. Bromelain: an anti-inflammatory agent. Angiology. 1962;13(11):508-10.
46.    Inoue K, Motonaga A, Dainaka J, Nishimura T, Hashii H, Yamate K, et al. Effect of etodolac on prostaglandin E2 biosynthesis, active oxygen generation and bradykinin formation. Prostaglandins Leukot Essent Fatty Acids. 1994;51(6):457-462.
47.    Chakraborty AJ, Mitra S, Tallei TE, Tareq AM, Nainu F, Cicia D, et al. Bromelain a potential bioactive compound: a comprehensive overview from a pharmacological perspective. Life. 2021;11(4):317.
48.    Sharma M, Chaudhary D. Exploration of bromelain laden nanostructured lipid carriers: An oral platform for bromelain delivery in rheumatoid arthritis management. Int J Pharm. 2021;594:120176.
49.    Bernela M, Ahuja M, Thakur R. Enhancement of anti-inflammatory activity of bromelain by its encapsulation in katira gum nanoparticles. Carbohydr Polym. 2016;143:18-24.
50.    Shoba E, Lakra R, Kiran MS, Korrapati PS. 3 D nano bilayered spatially and functionally graded scaffold impregnated bromelain conjugated magnesium doped hydroxyapatite nanoparticle for periodontal regeneration. J Mech Behav Biomed Mater. 2020;109:103822.
51.    Sahu M, Sharma AK, Sharma G, Kumar A, Nandave M, Babu V. Facile synthesis of bromelain copper nanoparticles to improve the primordial therapeutic potential of copper against acute myocardial infarction in diabetic rats. Can J Physiol Pharmacol. 2022;100(3):210-219.