Circulating microRNA as a potential biomarker and its nanotechnology based detection methods: A literature review

Document Type : Review Paper

Authors

Department of EEE, PSG College of Technology, Coimbatore, Tamilnadu 641 004, India

Abstract

Micro ribonucleic acid (miRNA) is single-stranded RNAs that play a key role in gene regulation and development. The origin and precise activities of miRNAs have been uncovered in recent years, with an emphasis on their potential applications in the research field. Thus, miRNAs are promising diagnostic and prognostic biomarkers especially disease specific biomarker.  Traditional methods for detection of miRNA lack sensitivity and specificity. Therefore, novel nanotechnology-based methods to detect microRNA have been developed. This literature review provides an overview of cutting edge nano approaches that have been used to identify distinct miRNA biomarkers. To date, no single or panel of miRNA marker has been developed for clinical application. Therefore, further research is needed on the detection of multiple miRNA biomarkers to diagnose various diseases at an early stage using nanotechnology.

Keywords


1.     Chan D, Ng LL. Biomarkers in acute myocardial infarction. BMC Med. 2010;8(1):1–11. 
2.     Iribarren C, Phelps BH, Darbinian JA, McCluskey ER, Quesenberry CP, Hytopoulos E, et al. Circulating angiopoietins-1 and-2, angiopoietin receptor Tie-2 and vascular endothelial growth factor-A as biomarkers of acute myocardial infarction: a prospective nested case-control study. BMC Cardiovasc Disord. 2011;11(1):1–9. 
3.     Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010;50(4):298–301. 
4.     Binderup HG, Madsen JS, Heegaard NHH, Houlind K, Andersen RF, Brasen CL. Quantification of microRNA levels in plasma--impact of preanalytical and analytical conditions. PLoS One. 2018;13(7):e0201069. 
5.     Wang R, Li N, Zhang Y, Ran Y, Pu J. Circulating microRNAs are promising novel biomarkers of acute myocardial infarction. Intern Med. 2011;50(17):1789–1795. 
6.     Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–355. 
7.     Sohn W, Kim J, Kang SH, Yang SR, Cho J-Y, Cho HC, et al. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp \& Mol Med. 2015;47(9):e184--e184. 
8.     Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854. 
9.     O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402. 
10.     Annese T, Tamma R, De Giorgis M, Ribatti D. microRNAs biogenesis, functions and role in tumor angiogenesis. Front Oncol. 2020;10:581007. 
11.     Degliangeli F, Pompa PP, Fiammengo R. Nanotechnology-based strategies for the detection and quantification of microRNA. Chem Eur J. 2014;20(31):9476–9492. 
12.     Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141(5):672–675. 
13.     Weber JA, Baxter DH, Zhang S, Huang DY, How Huang K, Jen Lee M, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–1741. 
14.     Abdellatif M. Differential expression of microRNAs in different disease states. Circ Res. 2012;110(4):638–50. 
15.     Bhaskaran M, Mohan M. MicroRNAs: History, biogenesis, and their evolving role in animal development and disease. Vet Pathol. 2014;51(4):759–774. 
16.     Pall GS, Hamilton AJ. Improved northern blot method for enhanced detection of small RNA. Nat Protoc. 2008;3(6):1077–1084. 
17.     Umeoguaju FU. Principles and procedures of the Northern blot technique. 
18.     Válóczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S, Havelda Z. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 2004;32(22):e175--e175. 
19.     Damm K, Bach S, Müller KMH, Klug G, Burenina OY, Kubareva EA, et al. Improved Northern blot detection of small RNAs using EDC crosslinking and DNA/LNA probes. Small Non-Coding RNAs Methods Protoc. 2015;41–51. 
20.     Chandrasekaran AR, Punnoose JA, Zhou L, Dey P, Dey BK, Halvorsen K. DNA nanotechnology approaches for microRNA detection and diagnosis. Nucleic Acids Res. 2019;47(20):10489–10505. 
21.     Kralik P, Ricchi M. A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front Microbiol. 2017;8:108. 
22.     Li W, Ruan K. MicroRNA detection by microarray. Anal Bioanal Chem. 2009;394:1117–1124. 
23.     Zhang X, Lu X, Lopez-Berestein G, Sood A, Calin G. In situ hybridization-based detection of microRNAs in human diseases. microRNA Diagn Ther. 2013;1(1):12–23. 
24.     Cissell KA, Shrestha S, Deo SK. MicroRNA detection: challenges for the analytical chemist. ACS Publications; 2007. 
25.     Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev. 2010;39(5):1747–63. 
26.     Xia N, Zhang L. Nanomaterials-based sensing strategies for electrochemical detection of microRNAs. Materials (Basel). 2014;7(7):5366–5384. 
27.     Ma Y, Zhang J, Zhang G, He H. Polyaniline nanowires on Si surfaces fabricated with DNA templates. J Am Chem Soc. 2004;126(22):7097–7101. 
28.     Fan Y, Chen X, Trigg AD, Tung C, Kong J, Gao Z. Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps. J Am Chem Soc. 2007;129(17):5437–5443. 
29.     El Aamri M, Yammouri G, Mohammadi H, Amine A, Korri-Youssoufi H. Electrochemical biosensors for detection of microRNA as a cancer biomarker: Pros and cons. Biosensors. 2020;10(11):186. 
30.     Gao Z, Yang Z. Detection of microRNAs using electrocatalytic nanoparticle tags. Anal Chem. 2006;78(5):1470–1477. 
31.     Peng Y, Gao Z. Amplified detection of microRNA based on ruthenium oxide nanoparticle-initiated deposition of an insulating film. Anal Chem. 2011;83(3):820–827. 
32.     Zhang G-J, Chua JH, Chee R-E, Agarwal A, Wong SM. Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens Bioelectron. 2009;24(8):2504–2508. 
33.     Huang C-H, Huang T-T, Chiang C-H, Huang W-T, Lin Y-T. A chemiresistive biosensor based on a layered graphene oxide/graphene composite for the sensitive and selective detection of circulating miRNA-21. Biosens Bioelectron. 2020;164:112320. 
34.     Eksin E, Torul H, Yarali E, Tamer U, Papakonstantinou P, Erdem A. based electrode assemble for impedimetric detection of miRNA. Talanta. 2021;225:122043. 
35.     Torul H, Yarali E, Eksin E, Ganguly A, Benson J, Tamer U, et al. based electrochemical biosensors for voltammetric detection of miRNA biomarkers using reduced graphene oxide or MoS2 nanosheets decorated with gold nanoparticle electrodes. Biosensors. 2021;11(7):236. 
36.     Dong J, Yang H, Zhao J, Wen L, He C, Hu Z, et al. Sandwich-type microRNA biosensor based on graphene oxide incorporated 3D-flower-like MoS2 and AuNPs coupling with HRP enzyme signal amplification. Microchim Acta. 2022;189(1):49. 
37.     Bergveld P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng. 1970;(1):70–71. 
38.     Gao J, Gao Y, Han Y, Pang J, Wang C, Wang Y, et al. Ultrasensitive label-free MiRNA sensing based on a flexible graphene field-effect transistor without functionalization. ACS Appl Electron Mater. 2020;2(4):1090–1098. 
39.     Sun J, Xie X, Xie K, Xu S, Jiang S, Ren J, et al. Magnetic graphene field-effect transistor biosensor for single-strand DNA detection. Nanoscale Res Lett. 2019;14(1):1–8. 
40.     Sadighbayan D, Hasanzadeh M, Ghafar-Zadeh E. Biosensing based on field-effect transistors (FET): Recent progress and challenges. TrAC Trends Anal Chem. 2020;133:116067. 
41.     Goda T, Singi AB, Maeda Y, Matsumoto A, Torimura M, Aoki H, et al. Label-free potentiometry for detecting DNA hybridization using peptide nucleic acid and DNA probes. Sensors. 2013;13(2):2267–2278. 
42.     Li K, Tu J, Zhang Y, Jin D, Li T, Li J, et al. Ultrasensitive detection of exosomal miRNA with PMO-graphene quantum dots-functionalized field-effect transistor biosensor. Iscience. 2022;25(7):104522. 
43.     Zhang J, Cui D. Nanoparticle-based Optical Detection of MicroRNA. Nano Biomed \& Eng. 2013;5(1). 
44.     Cacheux J, Bancaud A, Leichle T, Cordelier P. Technological challenges and future issues for the detection of circulating microRNAs in patients with cancer. Front Chem. 2019;7:815. 
45.     Hakimian F, Ghourchian H, Hashemi AS, Arastoo MR, Behnam Rad M. Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles. Sci Rep. 2018;8(1):2943. 
46.     Chaudhary V, Jangra S, Yadav NR. Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection. J Nanobiotechnology. 2018;16(1):1–18. 
47.     Yang D, Cheng W, Chen X, Tang Y, Miao P. Ultrasensitive electrochemical detection of miRNA based on DNA strand displacement polymerization and Ca 2+-dependent DNAzyme cleavage. Analyst. 2018;143(22):5352–5357. 
48.     Ma X, Xu H, Qian K, Kandawa-Schulz M, Miao W, Wang Y. Electrochemical detection of microRNAs based on AuNPs/CNNS nanocomposite with Duplex-specific nuclease assisted target recycling to improve the sensitivity. Talanta. 2020;208:120441. 
49.     Zhang J, Hun X. Electrochemical determination of miRNA-155 using molybdenum carbide nanosheets and colloidal gold modified electrode coupled with mismatched catalytic hairpin assembly strategy. Microchem J. 2019;150:104095. 
50.     Miao P, Tang Y, Yin J. MicroRNA detection based on analyte triggered nanoparticle localization on a tetrahedral DNA modified electrode followed by hybridization chain reaction dual amplification. Chem Commun. 2015;51(86):15629–15632. 
51.     Zhang X, Yu Y, Shen J, Qi W, Wang H. Design of organic/inorganic nanocomposites for ultrasensitive electrochemical detection of a cancer biomarker protein. Talanta. 2020;212:120794. 
52.     Heidari R, Rashidiani J, Abkar M, Taheri RA, Moghaddam MM, Mirhosseini SA, et al. CdS nanocrystals/graphene oxide-AuNPs based electrochemiluminescence immunosensor in sensitive quantification of a cancer biomarker: p53. Biosens Bioelectron. 2019;126:7–14. 
53.     Majd SM, Salimi A, Ghasemi F. An ultrasensitive detection of miRNA-155 in breast cancer via direct hybridization assay using two-dimensional molybdenum disulfide field-effect transistor biosensor. Biosens Bioelectron. 2018;105:6–13. 
54.     Kasturi S, Eom Y, Torati SR, Kim C. Highly sensitive electrochemical biosensor based on naturally reduced rGO/Au nanocomposite for the detection of miRNA-122 biomarker. J Ind Eng Chem. 2021;93:186–195. 
55.     Liao R, Li S, Wang H, Chen C, Chen X, Cai C. Simultaneous detection of two hepatocellar carcinoma-related microRNAs using a clever single-labeled fluorescent probe. Anal Chim Acta. 2017;983:181–188. 
56.     Liao R, He K, Chen C, Chen X, Cai C. Double-strand displacement biosensor and quencher-free fluorescence strategy for rapid detection of microRNA. Anal Chem. 2016;88(8):4254–8. 
57.     Lv S, Chen F, Chen C, Chen X, Gong H, Cai C. A novel CdTe quantum dots probe amplified resonance light scattering signals to detect microRNA-122. Talanta. 2017;165:659–663. 
58.     Chen F, Zhang F, Liu Y, Cai C. Simply and sensitively simultaneous detection hepatocellular carcinoma markers AFP and miRNA-122 by a label-free resonance light scattering sensor. Talanta. 2018;186:473–480. 
59.     Labib M, Khan N, Ghobadloo SM, Cheng J, Pezacki JP, Berezovski M V. Three-mode electrochemical sensing of ultralow microRNA levels. J Am Chem Soc. 2013;135(8):3027–3038. 
60.     Gao Y, Tian J, Zhang X, Qiao B, Cao Y, Wang X, et al. A fluorescence assay for microRNA let-7a by a double-stranded DNA modified gold nanoparticle nanoprobe combined with graphene oxide. Analyst. 2020;145(4):1190–1194. 
61.     Wang J, Lu Z, Tang H, Wu L, Wang Z, Wu M, et al. Multiplexed electrochemical detection of miRNAs from sera of glioma patients at different stages via the novel conjugates of conducting magnetic microbeads and diblock oligonucleotide-modified gold nanoparticles. Anal Chem. 2017;89(20):10834–10840. 
62.     Yin H, Zhou Y, Zhang H, Meng X, Ai S. Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system. Biosens Bioelectron. 2012;33(1):247–253. 
63.     Alizadeh N, Salimi A, Hallaj R. Hemin/G-Quadruplex horseradish peroxidase-mimicking DNAzyme: principle and biosensing application. Catal Act Nucleic Acids. 2020;85–106. 
64.     Zhang H, Fan M, Jiang J, Shen Q, Cai C, Shen J. Sensitive electrochemical biosensor for MicroRNAs based on duplex-specific nuclease-assisted target recycling followed with gold nanoparticles and enzymatic signal amplification. Anal Chim Acta. 2019;1064:33–39. 
65.     Low SS, Pan Y, Ji D, Li Y, Lu Y, He Y, et al. Smartphone-based portable electrochemical biosensing system for detection of circulating microRNA-21 in saliva as a proof-of-concept. Sensors Actuators B Chem. 2020;308:127718. 
66.     Hu F, Zhang W, Zhang J, Zhang Q, Sheng T, Gu Y. An electrochemical biosensor for sensitive detection of microRNAs based on target-recycled non-enzymatic amplification. Sensors Actuators B Chem. 2018;271:15–23. 
67.     Salahandish R, Ghaffarinejad A, Omidinia E, Zargartalebi H, Majidzadeh-A K, Naghib SM, et al. Label-free ultrasensitive detection of breast cancer miRNA-21 biomarker employing electrochemical nano-genosensor based on sandwiched AgNPs in PANI and N-doped graphene. Biosens Bioelectron. 2018;120:129–136. 
68.     Chen Y-W, Kuo W-C, Tai T-Y, Hsu C-P, Sarangadharan I, Pulikkathodi AK, et al. Highly sensitive and rapid MicroRNA detection for cardiovascular diseases with electrical double layer (EDL) gated AlGaN/GaN high electron mobility transistors. Sensors Actuators B Chem. 2018;262:365–370. 
69.     Ahmed MU, Hossain MM, Safavieh M, Wong YL, Rahman IA, Zourob M, et al. Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes. Crit Rev Biotechnol. 2016;36(3):495–505.