Current perspective on theranostic gold nanoparticles: Synthesis and biomedical applications

Document Type : Review Paper


1 Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran

2 Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran


As one of the most well-known metal nanoparticles, gold nanoparticles (AuNPs) have attracted much attention for the biological applications. This great interest in AuNPs can be attributed to their outstanding physical and chemical properties, such as special optical and electrochemical characteristics, high X-ray attenuation ability, strong X-ray absorption, photothermal effect, stability and biocompatibility. In addition, due to the ease of synthesis and modification of the surface of AuNPs, it is possible to control their shape, size and surface characteristics. All these features suggest that AuNPs can be used for biosensing strategies, drug delivery, photothermal therapy, nanobrachytherapy, enhanced radiotherapy and CT imaging. In addition, they can be used as antibacterial and antifungal agents. This minireview focuses on the key principles, research achievements and new opportunities in the synthesis of AuNPs as well as their biological applications. In fact, the growing progress in the use of AuNPs for the diagnostic and therapeutic applications is described in this survey. Overall, a better understanding of the key aspects of the synthesis methodologies will lead to the development of new protocols that can provide ideas for more cost-effective and reliable approaches to the production of AuNPs.


2. Hammami I, Alabdallah NM, Aljomaa A, Kamoun M. Gold nanoparticles: Synthesis properties and applications. J King Saud Univ Sci. 2021;33(7):101560.
3. Sibuyi NRS, Moabelo KL, Fadaka AO, Meyer S, Onani MO, Madiehe AM, Meyer M. Multifunctional gold nanoparticles for improved diagnostic and therapeutic applications: A Review. Nanoscale Res Lett. 2021;16(1):174.
4. Farzin L, Shamsipur M, Samandari L, Sheibani S. Signalling probe displacement electrochemical aptasensor for malignant cell surface nucleolin as a breast cancer biomarker based on gold nanoparticle decorated hydroxyapatite nanorods and silver nanoparticle labels. Midochim Acta. 2018;185(2):154.
5. Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol. 2020;8:990.
6. Kus-Liśkiewicz M, Fickers P, Tahar IB. Biocompatibility and cytotoxicity of gold nanoparticles: Recent advances in methodologies and regulations. Int J Mol Sci. 2021;22(20): 10952.
7. Zhang J, Mou L, Jiang X. Surface chemistry of gold nanoparticles for healthrelated applications. Chem Sci. 2020;11(4):923.
8. Huang X and El-Sayed MA. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 2010;1(1):13-28.
9. Deng J, Lu Q, Hou Y, Liu M, Li H, Zhang Y, Yao S. Nanosensor composed of nitrogen-doped carbon dots and gold nanoparticles for highly selective detection of cysteine with multiple signals. Anal Chem. 2015;87(4):2195-2203.
10. Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, Webster TJ. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int Nanomedicine. 2020;2020: 275–300.
11. Turkevich J, Stevenson PC, Hiller PCJ. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55–75.
12. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B. 2006;110(32):15700–15707.
13. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Physic Sci. 1973;241:20–22.
14. Hussain MH, Abu Bakar NF, Mustapa AN, Low KF, Othman NH, Adam F. Synthesis of various size gold nanoparticles by chemical reduction method with different solvent polarity. Nanoscale Res Lett. 2020;15(1):140.
15. Oliveira JP, Prado AR, Keijok WJ, Ribeiro MRN, Pontes MJ, Nogueira BV, Guimarães MCC. A helpful method for controlled synthesis of monodisperse gold nanoparticles through response surface modeling. Arab J Chem. 2020;13: 216-226.
16. Hassan H, Sharma P, Hasan MR, Singh S, Thakur D, Narang J. Gold nanomaterials – The golden approach from synthesis to applications. Mater Sci Energy Technol. 2022;5:375-390.
17. Cai F, Li S, Huang H, Iqbal J, Wang C, Jiang X. Green synthesis of gold nanoparticles for immune response regulation: Mechanisms, applications, and perspectives. J Biomed Mater Res A. 2022;110(2):424–442.
18. Boruah JS, Devi C, Hazarika U, Reddy VB, Chowdhury D, Barthakur M, Kalita P. Green synthesis of gold nanoparticles using an antiepileptic plant extract: in vitro biological and photo-catalytic activities. RSC Adv. 2021;11(45):28029.
19. Amina SJ, Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int J Nanomed. 2020;2020:9823–9857.
20. Mishra A, Kumari M, Pendey S, Chaudhry V, Gupta KC, Nautiyal CS. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol. 2014;166:235-242.
21. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Nature. 2014;6(1):35-44.
22. Tabrizi MA, Shamsipur M, Farzin L. A high sensitive electrochemical aptasensor for the determination of VEGF165 in serum of lung cancer patient. Biosens Bioelectron. 2015;74:764–769.
23. Ghosh S, Patil S, Ahire M, Kitture R, Gurav DD, Jabgunde AM, Kale S, Pardesi K, Shinde V, Bellare J, Dhavale DD, Chopade BA. Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. J Nanobiotech. 2012;10(1):17.
24. Li S, Al-Misned FA, El-Serehy HA, Yang L. Green synthesis of gold nanoparticles using aqueous extract of Mentha Longifolia leaf and investigation of its anti-human breast carcinoma properties in the in vitro condition. Arab J Chem. 2021;14(2):102931.
25. Pechyen C, Ponsanti K, Tangnorawich B, Ngernyuang N.  Waste fruit peel – mediated green synthesis of biocompatible gold nanoparticles. J Mater Res Tech 2021;14(5):2982-2991.
26. Phukan K, Devi R, Chowdhury D. Green synthesis of gold nano-bioconjugates from onion peel extract and evaluation of their antioxidant, anti-inflammatory, and cytotoxic studies. ACS Omega. 2021;6(28):17811–17823.
27. Uzair B, Liaqat A, Iqbal H, Menaa B, Razzaq A, Thiripuranathar G, Rana NF, Menaa F. Green and cost-effective synthesis of metallic nanoparticles by algae: Safe methods for translational medicine. Bioengineering. 2020;7(4):129.
28. Ghodake G, Lee DS. Biological synthesis of gold nanoparticles using the aqueous extract of the brown algae Laminaria Japonica. J nanoelectron Optoelectron. 2011;6(3):268–271.
29. González-Ballesteros N, Flórez-Fernández N, Torres MD, Domínguez H, Rodríguez-Argüelles MC. Synthesis, process optimization and characterization of gold nanoparticles using crude fucoidan from the invasive brown seaweed Sargassum muticum. Algal Res. 2021;58:102377.
30. Pourali P, Badiee SH, Manafi S, Noorani T, Rezaei A, Yahyaei B. Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electron J Biotech. 2017;29: 86–93.
31. Arib C, Spadavecchia J, delaChapelle ML. Enzyme mediated synthesis of hybrid polyedric gold nanoparticles. Sci Reports. 2021;11:3208.
32. da Silva AB, Rufato KB, de Oliveira AC, Souza PR, da Silva EP, Muniz EC, Vilsinski BH, Martins AF. Composite materials based on chitosan/gold nanoparticles: From synthesis to biomedical applications. Int J Biol Macromol. 2020;161: 977–998.
33. Majidi H, Salehi R, Pourhassan-Moghaddam M, Mahmoodi S, Poursalehi Z, Vasilescu S. Antibody conjugated green synthesized chitosan-gold nanoparticles for optical biosensing. Colloid Interface Sci Commun. 2019;33:100207.
34. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman RJ. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Chem Soc Chem Commun. 1994;7:801–802.
35. Booth SG, Uehara A, Chang SY, La Fontaine C, Fujii T, Okamoto Y, Imai T, Schroeder SLM, Dryfe RAW. The significance of bromide in the Brust–Schiffrin synthesis of thiol protected gold nanoparticles. Chem Sci. 2017;8(12):7954–7962.
36. Saldan I, Dobrovetska O, Sus L, Makota O, Pereviznyk O, Kuntyi O, Reshetnyak O Electrochemical synthesis and properties of gold nanomaterials. J Solid State Electrochem. 2018;22(3):637–656.
37. Reetz MT, Helbig W. Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc. 1994; 116(16): 7401–7402.
38. Haro-González PG, Ramírez-Rico DS, Larios-Durán ER. Synthesis of gold nanoparticles in aqueous solutions by electrochemical reduction using poly(ethylen glicol) as stabilizer. Int J Electrochem Sci. 2019;14:9704–9710.
39. Ma H, Yin B, Wang S, Jiao Y, Pan W, Huang S, Chen S, Meng F. Synthesis of silver and gold nanoparticles by a novel electrochemical method. ChemPhysChem. 2004;5(1):68–75.
40. Jagtap NR, Shelke VA, Nimase MS, Jadhav SM, Shankarwar SG, Chondhekar TK. Electrochemical synthesis of tetra alkyl ammonium salt stabilized gold nanoparticles. Syn React Inorg Metaorg Nanometal Chem. 2012;42(10):1369–1374.
41. Zhang Y, Wei S, Chen S. A facile and novel synthetic route to gold nanoparticles using cefazolin as a template for a sensor. Int J Electrochem Sci. 2013;8:6493–6501.
42. Singh S, Jain DVS, Singla ML. One step electrochemical synthesis of gold-nanoparticles–polypyrrole composite for applicationin catechin electrochemical biosensor. Anal Methods. 2013;5(4):1024.
43. Song Y, Zhu A, Song Y, Cheng Z, Xu J, Zhou J. Experimental and theoretical study on the synthesis of gold nanoparticles using ceftriaxone as a stabilizing reagent for and its catalysis for dopamine. Gold Bull. 2012;45(3):153–160.
44. Dheyab MA, Aziz AA, Jameel MS. Recent advances in inorganic nanomaterials synthesis using sonochemistry: A comprehensive review on iron oxide, gold and iron oxide coated gold nanoparticles. Molecules. 2021;26(9):2453.
45. Fuentes-García JA, Santoyo-Salzar J, Rangel-Cortes E, Goya GF, Cardozo-Mata V, Pescador-Rojas JA. Effect of ultrasonic irradiation power on sonochemical synthesis of gold nanoparticle. Ultrasonics Sonochem. 2021;70:105274.
46. Dheyab MA, Aziz AA, Jameel MS, Khaniabadi PM, Mehrdel B. Sonochemical-assisted synthesis of highly stable gold nanoparticles catalyst for decoloration of methylene blue dye. Inorg Chem Commun. 2021;127:108551.
47. Okitsu K, Ashokkumar M, Grieser F. Sonochemical synthesis of gold nanoparticles:  Effects of ultrasound frequency. J Phys Chem B. 2005;109(44):20673–20675.
48. Macioszczyk J, Rac-Rumijowska O, Słobodzian P, Teterycz H, Malecha K. Microfluidical microwave reactor for synthesis of gold nanoparticles. Micromechines. 2017;8(11):318.
49. Assefa AG, Mesfin AA, Akele ML, Alemu AK, Gangapuram BR, Guttena V, Alle M. Microwave-assisted green synthesis of gold nanoparticles using Olibanum gum (Boswellia serrate) and its catalytic reduction of 4-nitrophenoland hexacyanoferrate (III) by sodium borohydrid. J Clust Sci. 2017;28(3):917–935.
50. Gutiérrez-Wing C, Esparza R, Vargas-Hernández C, Fernández García ME, José-Yacamán M. Microwave-assisted synthesis of gold nanoparticles self-assembled into self-supported superstructures. Nanoscale. 2012;4(7):2281–2287.
51. Arshi N, Ahmed F, Kumar S, Anwar MS, Lu J, Koo BH, Lee CG. Microwave assisted synthesis of gold nanoparticles and their antibacterial activity against Escherichia coli (E. coli). Current Appl Phys. 2011;11(1):S360–S363.
52. Nguyen TKL, Nguyen ND, Dang VP, Phan DT, Tran TH, Nguyen QH. Synthesis of platinum nanoparticles by gamma Co-60 ray irradiation method using chitosan as stabilizer. Adv Matter Sci Eng. 2019;2019:1.
53. Abdelghany AM, Abdelrazek EM, Badr SI, Abdel-Aziz MS, Morsi MA. Effect of gamma-irradiation on biosynthesized gold nanoparticles using Chenopodium murale leaf extract. J Saudi Chem Soc. 2017;21(5) 528–537.
54. Kulkarni MB, Goel S. Microfluidic devices for synthesizing nanomaterials—a review. Nano Express. 2020;1(3):032004.
55. Zhang X, Ma S, Li A, Chen L, Lu J, Geng X, Xie M, Liang X, Wan Y, Yang P. Continuous high-flux synthesis of gold nanoparticles with controllable sizes: a simple microfluidic system. Appl Nanosci. 2020;10(3):661-669.
56. Farzin MA and Abdoos H. A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. Talanta. 2021;224:121828.
57. Sortino AL, Censabella M, Munzi G, Boninelli S, Privitera V, Ruffino F. Laser-based synthesis of Au nanoparticles for optical sensing of glyphosate: A preliminary study. Micromechines. 2020;11(11):989.
58. Gentile L, Mateos H, Mallardi A, Dell’Aglio M, De Giacomo A, Cioffi N, Palazzo G. Gold nanoparticles obtained by ns-pulsed laser ablation in liquids (ns-PLAL) are arranged in the form of fractal clusters, J Nanoparticle Res. 2021;23(2):35.
59. Mzwd E, Ahmed NM, Suradi N, Alsaee SK, Altowyan AS, Almessiere MA, Omar AF. Green synthesis of gold nanoparticles in Gum Arabic using pulsed laser ablation for CT imaging. Sci. Reports. 2022;12:10549.
60. Wender H, Migowski P, Feil AF, Teixeira SR, Dupont J. Sputtering deposition of nanoparticles onto liquid substrates: Recent advances and future trends. Coord. Chem. Rev. 2013; 257(17-18): 2468-2483.
61. Siegel J, Kvítek O, Ulbrich P, Kolská Z, Slepička P, Švorčík V. Progressive approach for metal nanoparticle synthesis. Mater Lett. 2012; 89: 47–50.
62. Hatakeyama Y, Onishi K, Nishikawa K. Effects of sputtering conditions on formation of gold nanoparticles in sputter deposition technique. RSC Adv. 2011; 1(9): 1815–1821.
63. Lung JK, Huang JC, Tien DC, Liao CY, Tseng KH, Tsung TT, Kao WS, Tsai TH, Jwo CS, Lin HM, Stobinski L. Preparation of gold nanoparticles by arc discharge in water. J Alloys Compounds. 2007;434:655–658.
64. Tien DC, Chen LC, Thai NV, Ashraf S. Study of Ag and Au nanoparticles synthesized by arc discharge in deionized water. J Nanomaterials. 2010;2010:1.
65. Jabłońska J, Jankowski K, Tomasik M, Cykalewicz D, Uznański P, Cahuk S, Szybowicz M, Zakrzewska J, Mazurek P. Preparation of silver nanoparticles in a high voltage AC arc in water. SN Appl Sci. 2021;3(2):244.
66. Das A, Chadha R, Maiti N, Kapoor S. Role of surfactant in the formation of gold nanoparticles in aqueous medium. J Nanoparticles. 2014;2014:1.
67. Duy J, Connell LB, Eck W, Collins SD, Smith RL. Preparation of surfactant-stabilized gold nanoparticle-peptide nucleic acid conjugates. J. Nanoparticle Res. 2010;12(7):2363-2369.
68. Wall MA, Harmsen S, Pal S, Zhang L, Arianna G, Lombardi JR, Drain CM, Kircher MF. Surfactant-free shape control of gold nanoparticles enabled by unified theoretical framework of nanocrystal synthesis. Adv Mater. 2017;29(21):1.
69. Suárez-López R, Puntes VF, Bastús NG, Hervés C, Jaime C. Nucleation and growth of gold nanoparticles in the presence of different surfactants. A dissipative particle dynamics study. Sci Rep. 2022; 12:13926.
70. Agunloye E, Panariello L, Gavriilidis A, Mazzei L. A model for the formation of gold nanoparticles in the citrate synthesis method. Chem Engin Sci. 2018;191:318-331.
71. Wei MZ, Deng TS, Zhang Q, Cheng Z, Li S. Seed-mediated synthesis of gold nanorods at low concentrations of CTAB. ACS Omega. 2021; 6(13):9188-9195.
72. Wu X, Li H, Wang W, Su D, Wang X, Tao X, Wang Y, Chen H. Template-less synthesis of coded Au nanowires. Nano Lett. 2021; 21(2):1156-1160.
73. Borah D, Hazarika M, Tailor P, Silva AR, Chetia B, Singaravelu G, Das P. Starch-templated bio-synthesis of gold nanoflowers for in vitro antimicrobial and anticancer activities. Appl Nanosci. 2018;8(3):241-253.
74. Monsefi M, Tajerian T, Rowan A. Size-controlled synthesis of gold nanostars and their characterizations and plasmon resonances. J Nanostruct. 2020;10(2):198-205.
75. Zhang Y, Xu F, Sun Y, Guo C, Cui K, Shi Y, Wen Z, Li Z. Seed-mediated synthesis of Au nanocages and their electrocatalytic activity towards glucose oxidation. Chem Eur 2010;16(30):9248-9256.
76. Wu HL, Cuo CH, Huang MH, Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures. Langmuir 2010;26(14):12307-12313.
77. Farzin MA, Abdoos H, Saber R. AuNP-based biosensors for the diagnosis of pathogenic human coronaviruses: COVID-19 pandemic developments. Anal Bioanal Chem. 2022;414(24):7069–7084.
78. Iarossi M, Schiattarella C, Rea I, Stefano LD, Fittipaldi R, Vecchione A, Vellota R, Ventura BD. Colorimetric immunosensor by aggregation of photochemically functionalized gold nanoparticles. ACS Omega. 2018;3(4): 3805–3812.
79. Zheng L, Cai G, Wang S, Liao M, Li Y, Lin J. A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosens. Bioelectron. 2019;124-125:143-149.
80. Mansouri A, Danesh NM, Ramezani M. Colorimetric method based on salt-induced aggregation of gold nanoparticles and aptamer does not work for detection of tacrolimus. Nanomed J. 2021;8(3):229-233.
81. Kazerooni H, Bahreyni A, Ramezani M, Abnous K, Taghdisi M. A colorimetric aptasensor for selective detection of oxytetracycline in milk, using gold nanoparticles and oxytetracline-short aptamer. Nanomed J. 2019;6(2):105-111.
82. Shamsipur M, Farzin L, Tabrizi MA. Ultrasensitive aptamer-based on-off assay for lysozyme using a glassy carbon electrode modified with gold nanoparticles and electrochemically reduced graphene oxide. Microchim Acta. 2016;183(10):2733–2743.
83. Farzin L, Shamsipur M, Samandari L, Sheibani S. Signalling probe displacement electrochemical aptasensor for malignant cell surface nucleolin as a breast cancer biomarker based on gold nanoparticle decorated hydroxyapatite nanorods and silver nanoparticle labels. Microchim Acta. 2018;185(2):154.
84. Shamsipur M, Emami M, Farzin L, Saber R. A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients. Biosens Bioelectron. 2018;103:54-61.
85. Farzin MA, Abdoos H, Saber R. Graphite nanocrystals coated paper-based electrode for detection of SARS-Cov-2 gene using DNA-functionalized Au@carbon dot core–shell nanoparticles. Microchem J. 2022;179:107585.
86. Li S, Zhang T, Zhu Z, Gao N, Xu QH. Lighting up the gold nanoparticles quenched fluorescence by silver nanoparticles: a separation distance study. RSC Adv. 2016; 6(63):58566-58572.
87. Wang W, Chen C, Qian M, Zhao XS. Aptamer biosensor for protein detection using gold nanoparticles. Anal Biochem. 2008;373(2):213-219.
88. Yafout M, Ousaid A, Khayati Y, Otmani ISE. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. Sci African. 2021;11:e00685.
89. Go G, Lee CS, Yoon YM, Lim JH, Kim TH, Lee SH. PrPC aptamer conjugated-gold nanoparticles for targeted delivery of doxorubicin to colorectal cancer cells. Int J Mol Sci. 2021; 22(4):1976.
90. Bayat P, Abnous K, Balarastaghi S, Taghdisi SM, Saeedi M, Yazdian-Robati R, Mahmoudi M. Aptamer AS1411-functionalized gold nanoparticle-melittin complex for targeting MCF-7 breast cancer cell line. Nanomed J. 2022; 9(2):164-169.
91. Kudirat SO, Tawakalitu A, Saka AA, Kamaldeen AO, Mercy B, Oladejo J. Entrapped chemically synthesized gold nanoparticles combined with polyethylene glycol and chloroquine diphosphate as an improved antimalarial drug. Nanomed J. 2019;6(2):85-99.
92. Farzin L, Saber R, Sadjadi S, Mohagheghpour E, Sheini A. Nanomaterials-based hyperthermia: A literature review from concept to applications in chemistry and biomedicine. J Thermal Biol. 2022;104:103201.
93. Hwang S, Nam J, Jung S, Song J, Doh H, Kim S. Gold nanoparticle-mediated photothermal therapy: current status and future perspective. Nanomedicine. 2014;9(13): 2003-2022.
94. Wang J, Zhang Y, Jin N, Mao C, Yang M. Protein-induced gold nanoparticle assembly for improving the photothermal effect in cancer therapy. ACS Appl Mater Interfaces. 2019; 11(12):11136-11143.
95. Yang W, Xia B, Wang L, Ma S, Liang H, Wang D, Huang J. Shape effects of gold nanoparticles in photothermal cancer therapy. Mater Today Sustain. 2021;13:100078.
96. Farzin L, Sheibani S, Moasses MEi, Shamsipur M. An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions. J Biomed Mater Res A. 2019; 107(1): 251-285.
97. Chakravarty R, Chakravarty S, Guleria A, Kumar C, Kunwar A, Nair KVV, Sarma HD, Dash A. Clinical scale synthesis of intrinsically radiolabeled and cyclic RGD peptide functionalized 198Au nanoparticles for targeted cancer therapy. Nucl Med Biol. 2019;72-73:1-10.
98. Li X, Xiong Z, Xu X. 99mTc -labeled multifunctional low-generation dendrimer-entrapped gold nanoparticles for targeted SPECT/CT dual-mode imaging of tumors. ACS Appl Mater Interfaces. 2016;8(31):19883-19891.
99. Pretze M, Meulen NP, Wangler C, Schibli R, Wangler B. Targeted 64Cu-labeled gold nanoparticles for dual imaging with positron emission tomography and optical imaging. Lab Comp Radiopharm 2019;62(8):471-482.
100. Shen W, Zhou H, Liu T, Pei P, Huang J, Yi X, Yang K. The potential clinical applications of radionuclide labeled/doped gold-based nanomaterials. Red Med Protect. 2020; 1(4):186-195.
101. Axiak-Bechtel SM, Upendran A, Lattimer JC, Kelsey J, Cutler CS, Selting KA, Bryan JN, Henry CJ, Boote E, Tate DJ, Bryan ME, Katti KV, Kannan R. Gum arabic-coated radioactive gold nanoparticles cause no short-term local or systemic toxicity in the clinically relevant canine model of prostate cancer. Int J Nanomedicine. 2014;9:5001–5011.
102. Choi J, Jung KO, Graves EE, Pratx G. A gold nanoparticle system for enhancement of radiotherapy and simultaneous monitoring of reactive-oxygen-species formation. Nanotechnology. 2018;29(50):504001.
103. Piccolo O, Lincoln JD, Melong N, Orr BC, Fernandez NR, Borsavage J, Berman JN, Robar J, Ha MN. Radiation dose enhancement using gold nanoparticles with a diamond linear accelerator target: a multiple cell type analysis. Sci Reports. 2022;12:1559.
104. Chen Y, Yang J, Fu S, Wu J. Gold nanoparticles as radiosensitizers in cancer radiotherapy. Int J Nanomedicine. 2020;15:9407–9430.
105. Rostami A and Sazgarnia A. Gold nanoparticles as cancer theranostic agents. Nanomed J. 2019;6(3):147-160.
106. McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT, Schettino G, Dickson GR, Hounsell AR, O’Sullivan JM. Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiother Oncol. 2011; 100(3):412–416.
107. Bemidinezhad A, Mirzavi F, Gholamhosseini H, Gheybi F, Soukhtanloo M. Green synthesis of glucose-coated gold nanoparticles for improving radiosensitivity in human U87 glioblastoma cell line. Nanomed J. 2022;9(4):328-333.
108. He JS, Liu S, Zhang Y, Chu X, Lin Z, Zhao Z, Qiu S, Guo Y, Ding H, Pan Y, Pan J. The application of and strategy for gold nanoparticles in cancer immunotherapy. Front Farmacol. 2021;12:687399.
109. Zhang D, Wu T, Qin X, Qiao Q, Shang L, Song Q, Yang C, Zhang Z. Intracellularly generated immunological gold nanoparticles for combinatorial photothermal therapy and immunotherapy against tumor. Nano Lett. 2019;19(9): 6635-6646.
110. Javanmardghooghan O, Azmoudeh F, Sadeghdoust M, Aligolighasemabadi F, Khakzad MR. Sublingual immunotherapy by nanogold in mice model of asthma. Nanomed J. 2021;8(2):124-131.
111. Lee SB, Ahn SB, Lee SW, Jeong SY, Ghilsuk Y, Ahn BC, Kim EM, Jeong HJ, Lee J, Lim DK, Jeon YH. Radionuclide-embedded gold nanoparticles for enhanced dendritic cell-based cancer immunotherapy, sensitive and quantitative tracking of dendritic cells with PET and Cerenkov luminescence. NPG Asia Mater 2016; 8: e281.
112. Dong YC, Hajfathalian M, Maidment PSN, Hsu JC, Naha PC, Si-Mohamed S, Breuilly M, Kim J, Chhour P, Douek P, Litt HI, Cormode DP. Effect of gold nanoparticle size on their properties as contrast agents for computed tomography. Sci Reports. 2019;9:14912.
113. Asadinezhad M, Azimian H, Ghadiri H, Khademi S. Gold nanoparticle parameters play an essential role as CT imaging contrast agents. J Nanostructures. 2021;11(4):668-677.
114. Oumano M, Russell L, Salehjahromi M, Shanshan L, Sinha N, Ngwa W, Yu H. CT imaging of gold nanoparticles in a human-sized phantom. J Appl Clin Med Phys. 2021 22(1):337-342.
115. Hainfeld JF, O’Connor MJ, Dilmanian FA, Slatkin DN, Adams DJ, Smilowitz HM. Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. Br J Radiol. 2011;84(1002):526-533.
116. Sun IC, Eun DK, Na JH, Lee S, Kim IJ, Youn IC, Ko CY, Kim HS, Lim D, Choi K, Messersmith PB, Park TG, Kim SY, Kwon IC, Kim K, Ahn CH. Heparin-coated gold nanoparticles for liver-specific CT imaging. 2009;15(48):13341-13347.
117. Estelrich J, Sánchez-Martín MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine. 2015;10:1727-1741.
118. Sarikhani A, Alamzadeh Z, Beik J, Irajirad R, Mirrahimi M, Mahabadi VP, Kamrava SK, Ghaznavi H, Khoei S. Ultrasmall Fe3O4 and Gd2O3 hybrid nanoparticles for T1-weighted MR imaging of cancer. Cancer Nanotechnol. 2022;13(1):43. 
119. Marashdeh MW, Ababneh B, Lemine OM, Alsadig A, Omri K, El Mir L, Sulieman A, Mattar E. The significant effect of size and concentrations of iron oxide nanoparticles on magnetic resonance imaging contrast enhancement. Results Phys. 2019;15:102651.
120. Caro C, Gamez F, Quaresma P, Páez-Muñoz JM, Domínguez A, Pearson JR, Leal MP, Beltrán AM, Fernandez-Afonso Y, De la Fuente JM, Franco R, Pereira E, García-Martín ML. Fe3O4-Au core-shell nanoparticles as a multimodal platform for in vivo imaging and focused photothermal therapy. Pharmaceutics. 2021;13(3):416.
121. Hu Y, Wang R, Wang S, Ding L, Li J, Luo Y, Wang X, Shen M, Shi X. Multifunctional Fe3O4 @ Au core/shell nanostars: a unique platform for multimode imaging and photothermal therapy of tumors. Sci Rep. 2016;6:28325.
122. Li J, Hu Y, Yang J, Wei P, Sun W, Shen M, Zhang G, Shi X. Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials. 2015;38:10-21.
123. Polívková M, Hubáček T, Staszek M, Švorčík V, Siegel J. Antimicrobial treatment of polymeric medical devices by silver nanomaterials and related technology. Int J Mol Sci. 2017;18(2):419.
124. Ferdous Z and Nemmar A. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020; 21(7):2375.
125. Fatemi M. The effects of indirect exposure of nanosilver on caspase-8 and caspase-9 levels in liver and brain of suckling rats. Nanomed J. 2019;6(3):176-182.
126. Piktel E, Suprewicz L, Depciuch J, Chmielewska S, Sklodowski K, Daniluk T, Krol G, Kolat-Brodecka P, Bijak P, Pajor-Swierzy A, Fiedoruk K, Parlinska-Wojtan M, Bucki R.  Varied-shaped gold nanoparticles with nanogram killing efficiency as potential antimicrobial surface coatings for the medical devices. Sci Reports. 2021;11:12546.
127. Zhang Y, Dasari TPS, Deng H, Yu H, Antimicrobial activity of gold nanoparticles and ionic gold. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2015;33(3):286-327.