Green synthesis of Ag-NPs as a metal nanoparticle and ZnO-NPs as a metal oxide nanoparticle: Evaluation of the in vitrocytotoxicity, anti-oxidant, anti-angiogenic activities

Document Type : Research Paper


1 Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran

2 Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran

3 Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran



Objective(s): The study aimed to synthesize both silver- and zinc-oxide nanoparticles utilizing the Peganum harmala smoke extract (PHSE) bio-platform to evaluate their cytotoxicity on different types of human cancer cell lines and study their anti-oxidant, and anti-angiogenic potentials. 
Materials and Methods: The Silver (Ag) and zinc oxide (ZnO) nanoparticles (NP) were produced utilizing the green-synthesize method by applying the PHSE bio-platform. After characterization by X-Ray Diffraction (XRD), dynamic light scattering (DLS), Field emission scanning electron microscopy (FESEM), and Fourier-transform infrared spectroscopy (FTIR) methods. MTT assay was used for the evaluation toxicity of nanoparticles. ABTS, DPPH, FRAP, and ROS for anti-oxidant capacity, chicks’ chorioallantoic membrane (CAM), and qPCR for anti-angiogenesis effects of nanoparticles were used. 
Results: Ag-NPs (82.42 nm) and ZnO-NPs (163.05 nm) inhibited prostate, ovarian, and liver malignant cells. Inhibition of ABTS•+ and DPPH•+ and increasing the rate of intracellular ROS exhibited the anti and pro-oxidant capacity of Ag and ZnO-NPs out and inside of malignant cells. Also, their anti-angiogenesis impact was verified by significant dose-dependent VEGF and VEGFR down-regulation and the decreased blood vessels in the CAM. 
Conclusion: The anti-oxidant, cytotoxicity and anti-angiogenesis effects of Ag and ZnO-NPs synthesized from Pecan smoke extract make it possible to use these nanoparticles in cancer chemotherapy.


1.    Martínez-Vieyra C, Olguin M, Gutiérrez-Segura E, López-Tellez G. Comparison of Ag, Cu and Zn nanoparticles obtained using Aloe vera extract and gamma ionizing radiation. Journal of Applied Research and Technology. 2020;18(5):289-314.
2.    Raghunandan D, Ravishankar B, Sharanbasava G, Mahesh DB, Harsoor V, Yalagatti MS, et al. Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol. 2011;2(1):57-65.
3.    Banerjee D, Harfouche R, Sengupta S. Nanotechnology-mediated targeting of tumor angiogenesis. Vascular cell. 2011;3(1):1-13.
4.    Singh BN, Rawat AKS, Khan W, Naqvi AH, Singh BR. Biosynthesis of stable anti-oxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids. PLoS One. 2014;9(9):e106937.
5.    Jesionowski T. Zinc oxide—from synthesis to application: a review. Materials. 2014;7:2833-2881.
6.    Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 2010;7(9):1063-1077.
7.    Nasrollahzadeh MS, Ghodsi R, Hadizadeh F, Maleki M, Mashreghi M, Poy D. Zinc oxide nanoparticles as a potential agent for antiviral drug delivery development: A systematic literature review. Curr Nanosci. 2022;18(2):147-1453.
8.    Zhang Z-Y, Xiong H-M. Photoluminescent ZnO nanoparticles and their biological applications. Materials. 2015;8(6):3101-3127.
9.    Xiong HM. ZnO nanoparticles applied to bioimaging and drug delivery. Adv Mater. 2013;25(37):5329-5335.
10.    Burdușel A-C, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials. 2018;8(9):681.
11.    Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug discovery today. 2015;20(5):595-601.
12.    Es‐haghi A, Mashreghi M, Rezazade Bazaz M, Homayouni‐Tabrizi M, Darroudi M. Fabrication of biopolymer based nanocomposite wound dressing: evaluation of wound healing properties and wound microbial load. IET Nanobiotechnol. 2017;11(5):517-522.
13.    Mousavi-Kouhi SM, Beyk-Khormizi A, Amiri MS, Mashreghi M, Yazdi MET. Silver-zinc oxide nanocomposite: From synthesis to antimicrobial and anticancer properties. Ceram Int. 2021;47(15):21490-21497.
14.    Thunugunta T, Reddy AC, DC LR. Green synthesis of nanoparticles: current prospectus. Nanotechnol Rev. 2015;4(4):303-323.
15.    Ananthalakshmi R, Rajarathinam S, Sadiq AM. Anti-oxidant activity of ZnO Nanoparticles synthesized using Luffa acutangula peel extract. Res J Pharm Technol. 2019;12(4):1569-1572.
16.    Tanase C, Berta L, Coman NA, Roșca I, Man A, Toma F, et al. Antibacterial and anti-oxidant potential of silver nanoparticles biosynthesized using the spruce bark extract. Nanomaterials. 2019;9(11):1541.
17.    Gomes HI, Martins CS, Prior JA. Silver nanoparticles as carriers of anticancer drugs for efficient target treatment of cancer cells. Nanomaterials. 2021;11(4):964.
18.    Zhang T, Du E, Liu Y, Cheng J, Zhang Z, Xu Y, et al. Anticancer effects of zinc oxide nanoparticles through altering the methylation status of histone on bladder cancer cells. Int J Nanomedicine. 2020;15:1457.
19.    Siddiqi KS, ur Rahman A, Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett. 2018;13(1):1-13.
20.    Talapko J, Matijević T, Juzbašić M, Antolović-Požgain A, Škrlec I. Antibacterial activity of silver and its application in dentistry, cardiology and dermatology. Microorganisms. 2020;8(9):1400.
21.    Mohammad GRKS, Tabrizi MH, Ardalan T, Yadamani S, Safavi E. Green synthesis of zinc oxide nanoparticles and evaluation of anti-angiogenesis, anti-inflammatory and cytotoxicity properties. J Biosci. 2019;44(2):1-9.
22.    Khandia R, Munjal A, Bangrey R, Mehra R, Dhama K, Sharma N. Evaluation of silver nanoparticle mediated reduction of neovascularisation (angiogenesis) in chicken model. Adv Anim Vet Sci. 2015;3(7):372-376.
23.    Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology. Integ Biol. 2014;6(1):9-26.
24.    Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:8416763.
25.    Soltani M, Etminan A, Rahmati A, Behjati Moghadam M, Ghaderi Segonbad G, Homayouni Tabrizi M. Incorporation of Boswellia sacra essential oil into chitosan/TPP nanoparticles towards improved therapeutic efficiency. Mater Techno. 2021:1-13.
26.    Saud Alarifi DA, Alkahtani S, Verma A, Ahamed M, Ahmed M, Alhadlaq HA. Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomedicine. 2013;8:983.
27.    Balkrishna A, Kumar A, Arya V, Rohela A, Verma R, Nepovimova E, et al. Phytoanti-oxidant Functionalized Nanoparticles: A Green Approach to Combat Nanoparticle-Induced Oxidative Stress. Oxid Med Cell Longev. 2021;2021:3155962..
28.    Wang ZL. Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter. 2004;16(25):R829.
29.    Meulenkamp EA. Synthesis and growth of ZnO nanoparticles. J Phys Chem B. 1998;102(29):5566-5572.
30.    Ahmed NH, Said UZ, Meky NH, Mohamed MA. Role of chitosan nanoparticles as anti-angiogenic in mice bearing Ehrlich carcinoma. Oncol Res Rev. 2018;1:1-6.
31.    Ahtzaz S, Nasir M, Shahzadi L, Amir W, Anjum A, Arshad R, et al. A study on the effect of zinc oxide and zinc peroxide nanoparticles to enhance angiogenesis-pro-angiogenic grafts for tissue regeneration applications. Mater Des. 2017;132:409-418.
32.    Branch S. Etymological review on chemical and pharmaceutical substances of the oriental origin. Int J Anim Veter Adv. 2012;4:40-44.
33.    Shabestarian H, Homayouni Tabrizi M, Movahedi M, Neamati A, Sharifnia F. Putative mechanism for cancer suppression by PLGA nanoparticles loaded with Peganum harmala smoke extract. J Microencapsul. 2021;38(5):324-337.
34.    Shahverdi A, Ostad S, Khodaee S, Bitarafan L, Monsef-Esfahani H, Jamalifar H, et al. Antimicrobial and cytotoxicity potential of Peganum harmala smoke. Pharmacogn Mag. 2008;4(15):236.
35.    Ahmed S, Ahmad M, Swami BL, Ikram S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci. 2016;9(1):1-7.
36.    Santhoshkumar J, Kumar SV, Rajeshkumar S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies. 2017;3(4):459-465.
37.    Mishra V, Sharma R. Green synthesis of zinc oxide nanoparticles using fresh peels extract of Punica granatum and its antimicrobial activities. Int J Pharma Res Health Sci. 2015;3(3):694-699.
38.    Li P, Huo L, Su W, Lu R, Deng C, Liu L, et al. Free radical-scavenging capacity, anti-oxidant activity and phenolic content of Pouzolzia zeylanica. Glas Hem Drus Beogr. 2011;76(5):709-717.
39.    Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “anti-oxidant power”: the FRAP assay. Anal Biochem. 1996;239(1):70-76.
40.    Rajurkar NS, Hande S. Estimation of phytochemical content and anti-oxidant activity of some selected traditional Indian medicinal plants. Indian J. Pharm. Sci. 2011;73(2):146.
41.    Thyagarajan A, Sahu RP. Potential contributions of anti-oxidants to cancer therapy: immunomodulation and radiosensitization. Integr. Cancer Ther. 2018;17(2):210-216.
42.    Sanaeimehr Z, Javadi I, Namvar F. Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnol. 2018;9(1):3.
43.    Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev. 2016;8(4):409-427.
44.    Wan Mat Khalir WKA, Shameli K, Jazayeri SD, Othman NA, Che Jusoh NW, Hassan NM. Biosynthesized silver nanoparticles by aqueous stem extract of Entada spiralis and screening of their biomedical activity. Front. Chem. 2020;8:620.
45.    Babu KS, Reddy AR, Sujatha C, Reddy KV, Mallika A. Synthesis and optical characterization of porous ZnO. J. Adv. Ceram. 2013;2(3):260-265.
46.    Jabeen S, Qureshi R, Munazir M, Maqsood M, Munir M, Shah SH, et al. Application of green synthesized silver nanoparticles in cancer treatment-a critical review. Mater. Res. Express. 2021.
47.    Murthy S, Effiong P, Fei CC. Metal oxide nanoparticles in biomedical applications.  Metal Oxide Powder Technologies: Elsevier; 2020. p. 233-251.
48.    Aalami AH, Mesgari M, Sahebkar A. Synthesis and characterization of green zinc oxide nanoparticles with antiproliferative effects through apoptosis induction and microRNA modulation in breast cancer cells. Bioinorg Chem Appl. 2020;2020 :8817110.
49.    Fakhari S, Jamzad M, Kabiri Fard H. Green synthesis of zinc oxide nanoparticles: A comparison. Green Chem Lett Rev. 2019;12(1):19-24.
50.    Selim YA, Azb MA, Ragab I, Abd El-Azim MH. Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Deverra tortuosa and their Cytotoxic Activities. Sci. Rep. 2020;10(1):1-9.
51.    Aminuzzaman M, Ying LP, Goh W-S, Watanabe A. Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull. Mater. Sci. 2018;41(2):50.
52.    Mahdizadeh R, Homayouni‐Tabrizi M, Neamati A, Seyedi SMR, Tavakkol Afshari HS. Green synthesized‐zinc oxide nanoparticles, the strong apoptosis inducer as an exclusive antitumor agent in murine breast tumor model and human breast cancer cell lines (MCF7). J Cell Biochem. 2019;120(10):17984-1793.
53.    Rodríguez-Luis OE, Hernandez-Delgadillo R, Sánchez-Nájera RI, Martínez-Castañón GA, Niño-Martínez N, Sánchez Navarro MdC, et al. Green synthesis of silver nanoparticles and their bactericidal and antimycotic activities against oral microbes. J Nanomater 2016;2016.
54.    Rashmi B, Harlapur SF, Avinash B, Ravikumar C, Nagaswarupa H, Kumar MA, et al. Facile green synthesis of silver oxide nanoparticles and their electrochemical, photocatalytic and biological studies. Inorg. Chem. Commun. 2020;111:107580.
55.    Manikandan V, Velmurugan P, Park J-H, Chang W-S, Park Y-J, Jayanthi P, et al. Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. 3 Biotech. 2017;7(1):72.
56.    Tabrizi MH. Fabrication of folic acid-conjugated chitosan-coated PLGA nanoparticles for targeted delivery of Peganum harmala smoke extract to breast cancer cells. Nanotechnol. 2022;33(49):495101.
57.    Naiel B, Fawzy M, Halmy MWA, Mahmoud AED. Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: characterization, evaluation of anti-skin cancer, antimicrobial and anti-oxidant potentials. Sci. Rep. 2022;12(1):1-12.
58.    Singh J, Dutta T, Kim K-H, Rawat M, Samddar P, Kumar P. ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnology. 2018;16(1):1-24.
59.    Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl. Nanosci. 2015;5(4):499-504.
60.    Shahryari F, Rabiei Z, Sadighian S. Antibacterial activity of synthesized silver nanoparticles by sumac aqueous extract and silver-chitosan nanocomposite against Pseudomonas syringae pv. syringae. J. Plant Pathol. 2020;102(2):469-475.
61.    El-Belely EF, Farag M, Said HA, Amin AS, Azab E, Gobouri AA, et al. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Arthrospira platensis (Class: Cyanophyceae) and evaluation of their biomedical activities. Nanomater. 2021;11(1):95.
62.    Mourdikoudis S, Pallares RM, Thanh NT. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10(27):12871-934.
63.    Movagharnia R, Baghbani-Arani F, Sadat Shandiz SA. Cytotoxicity effects of green synthesized silver nanoparticles on human colon cancer (HT29) cells. J Kashan Univ Med Sci--Feyz. 2018;22(1):31-38.
64.    Ghandehari S, Homayouni Homayouni Tabrizi M, Ardalan P. Study of anti-oxidant properties and toxicity of silver nanoparticles synthesized by aqueous extract of Rubia tinctorum on liver cancer cells (HepG2) compared to normal HDF cells. JIUMS. 2018;26(2):57-67.
65.    Patnaik S, Berehu HM, Khan I, Chakraborty R, Lavudi K, Mohapatra B, et al. Cytotoxic Potential of Biogenic Zinc Oxide Nanoparticles Synthesized From Swertia chirayita Leaf Extract on Colorectal Cancer Cells. Front. Bioeng. Biotechnol. 2021:1276.
66.    Lee S, Jung Y, Oh S, Song E, Choi S, Han H. Vibrio vulnificus VvhA induces NF-κ B-dependent mitochondrial cell death via lipid raft-mediated ROS production in intestinal epithelial cells. Cell Death Dis. 2015;6(2):1655.
67.    Ahmadi Shadmehri A, Namvar F, Miri H, Yaghmaei P, Nakhaei Moghaddam M. Assessment of anti-oxidant and antibacterial activities of Zinc Oxide nanoparticles, Graphene and Graphene decorated by Zinc Oxide nanoparticles. Int J Nano Dimens. 2019;10(4):350-358.
68.    Moteriya P, Padalia H, Chanda S. Characterization, synergistic antibacterial and free radical scavenging efficacy of silver nanoparticles synthesized using Cassia roxburghii leaf extract. J Genet Eng Biotechnol. 2017;15(2):505-513.
69.    Moteriya P, Chanda S. Synthesis and characterization of silver nanoparticles using Caesalpinia pulcherrima flower extract and assessment of their in vitro antimicrobial, anti-oxidant, cytotoxic, and genotoxic activities. Artif. Cells Nanomed Biotechnol. 2017;45(8):1556-1567.
70.    Bin-Jumah M, Monera A-A, Albasher G, Alarifi S. Effects of green silver nanoparticles on apoptosis and oxidative stress in normal and cancerous human hepatic cells in vitro. Int J Nanomedicine. 2020;15:1537.
71.    Lee SH, Pie J-E, Kim Y-R, Lee HR, Son SW, Kim M-K. Effects of zinc oxide nanoparticles on gene expression profile in human keratinocytes. Mol Cell Toxicol. 2012;8(2):113-118.
72.    Bai D-P, Zhang X-F, Zhang G-L, Huang Y-F, Gurunathan S. Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Int J Nanomedicine. 2017;12:6521.
73.    Gurunathan S, Lee K-J, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomater. 2009;30(31):6341-6350.
74.    Yang T, Yao Q, Cao F, Liu Q, Liu B, Wang X-H. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: Insight into the cytotoxicity and antiangiogenesis. Int J Nanomedicine. 2016;11:6679.
75.    Sheikpranbabu S, Kalishwaralal K, Venkataraman D, Eom SH, Park J, Gurunathan S. Silver nanoparticles inhibit VEGF-and IL-1β-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells. J Nanobiotechnology. 2009;7(1):1-12.
76.    Tada-Oikawa S, Ichihara G, Suzuki Y, Izuoka K, Wu W, Yamada Y, et al. Zn (II) released from zinc oxide nano/micro particles suppresses vasculogenesis in human endothelial colony-forming cells. Toxicol Rep. 2015;2:692-701.