Investigating the effect of cadmium telluride quantum dots coated with Nerium oleander hydroalcoholic extract on apoptosis induction in MCF7 cancer cells

Document Type : Research Paper

Authors

1 Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran

2 Department of Basic Sciences, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran

3 Medicinal Plant Research Center, Yasuj University of Medical Sciences, Yasuj, Iran

10.22038/nmj.2025.77429.1889

Abstract

Objective(s): Breast cancer, a prevalent malignancy, poses significant challenges despite current clinical strategies. Herbal medicine, such as Nerium oleander (N. oleander), and nanocarriers like Cadmium Telluride Quantum Dots (CdTe QDs), offer potential solutions. This study aims to evaluate the apoptosis-inducing effects of N. oleander extract using CdTe QDs as nanocarriers on the MCF-7 cell line, highlighting their potential in breast cancer treatment.
Materials and Methods: N. oleander specimens were collected and processed to obtain a hydroalcoholic extract. CdTe QDs were biosynthesized using the extract. MCF-7 cancer cells were cultured and treated in different groups, including the control group, extract group, QDs group, and extract + QDs group. Cell viability, Phosphatidylserine externalization, indicative of apoptosis, Caspases 3, 8, and 9 activity, DNA fragmentation, Nitric oxide (NO) levels, alkaline phosphatase activity and Clonogenic assays were determined.
Results: In our study, all tested substances, including N. oleander extract, CdTe QDs, and N. oleander-coated CdTe QDs, showed concentration and time-dependent cytotoxic effects on MCF-7 cells. N. oleander-coated CdTe QDs exhibited the highest cytotoxicity. These QDs also induced a significantly higher rate of apoptosis in treated MCF-7 cells after 24 hours. Moreover, the activity of caspases 3, 8, and 9 was notably increased in cells treated with N. oleander extract and N. oleander-coated CdTe QDs. Electrophoresis confirmed DNA fragmentation in these treated cells. N. oleander extract reduced nitric oxide production, with even lower levels observed in the extract + QDs group. Treatment with N. oleander extract and N. oleander-coated CdTe QDs also elevated alkaline phosphatase activity. Furthermore, N. oleander-coated CdTe QDs effectively reduced cell colony formation in a dose-dependent manner.
Conclusion: N. oleander-coated CdTe QDs demonstrated superior cytotoxicity and apoptosis-inducing effects on MCF-7 cells compared to N. oleander extract and CdTe QDs. This suggests their potential as a promising candidate for cancer therapy.

Keywords


  1. Mescher A, Mescher A. Junqueira's Basic Histology: Text and Atlas 14e: McGraw Hill Medical Publishing Division; 2013.
  2. Sadek B, Shenouda M, Abi Raad R, Niemierko A, Goldberg S, Taghian A. Does Lobular Carcinoma In Situ (LCIS) at the Surgical Margins Increase the Risk of Local Failure in Patients With Invasive Breast Cancer Receiving Conservative Treatment?. Int J Radiat Oncol Biol Phys. 2012;84(3):S187.
  3. Ferlay J. Globocan 2008 v2. 0, Cancer incidence and mortality worldwide: IARC CancerBase No. 10. http://globocan iarc fr. 2010.
  4. Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J. 2022;135(05):584-590.
  5. Yap KM, Sekar M, Seow LJ, Gan SH, Bonam SR, Mat Rani NNI, et al. Mangifera indica (Mango): A promising medicinal plant for breast cancer therapy and understanding its potential mechanisms of action. Breast Cancer: Targets and Therapy. 2021:471-503.
  6. Lee SY, Kim TH, Choi WG, Chung YH, Ko S-G, Cheon C, et al. SH003 Causes ER Stress-mediated Apoptosis of Breast Cancer Cells via Intracellular ROS Production. Cancer Genom Proteom. 2023;20(1):88-116.
  7. Usman M, Khan WR, Yousaf N, Akram S, Murtaza G, Kudus KA, et al. Exploring the phytochemicals and anti-cancer potential of the members of Fabaceae family: A comprehensive review. Molecules. 2022;27(12):3863.
  8. Shafiq Y, Naqvi SBS, Rizwani GH, Asghar MA, Bushra R, Ghayas S, et al. A mechanistic study on the inhibition of bacterial growth and inflammation by Nerium oleander extract with comprehensive in vivo safety profile. BMC Complement Med Ther. 2021;21(1):135.
  9. Ayouaz S, Koss-Mikołajczyk I, Adjeroud-Abdellatif N, Bartoszek A, Arab R, Mouhoubi K, et al. Anticarcinogenic and antioxidant activities of leaves and flowers hydroalcoholic extracts of Nerium oleander L.: PCA analysis and phytochemical content by FTIR spectroscopy. Nor Afr J FoodNutr Res. 2023;7(15):1-8.
  10. Al-Snafi AE. Bioactive ingredients and pharmacological effects of Nerium oleander. IOSR J Pharm. 2020;10(9):19-32.
  11. Kanwal N, Rasul A, Hussain G, Anwar H, Shah MA, Sarfraz I, et al. Oleandrin: A bioactive phytochemical and potential cancer killer via multiple cellular signaling pathways. Food Chem Toxicol. 2020;143:111570.
  12. Ananth DA, Rameshkumar A, Jeyadevi R, Jagadeeswari S, Nagarajan N, Renganathan R, et al. Antibacterial potential of rutin conjugated with thioglycolic acid capped cadmium telluride quantum dots (TGA-CdTe QDs). Spectrochimica acta part A: molecular and biomolecular spectroscopy. 2015;138:684-692.
  13. Cotta MA. Quantum dots and their applications: what lies ahead?. ACS Appl Nano Mater. 2020;3(6):4920-4924.
  14. Ghaderi S, Ramesh B, Seifalian AM. Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: a review. J Drug Target. 2011;19(7):475-486.
  15. Lai L, Jin J-C, Xu Z-Q, Mei P, Jiang F-L, Liu Y. Necrotic cell death induced by the protein-mediated intercellular uptake of CdTe quantum dots. Chemosphere. 2015;135:240-249.
  16. HAJI AF, Ostad S, Khanavi M, HAJI AA, Farahanikia B, Salarytabar A. Cytotoxicity of two species of Glaucium from Iran. JMed Plant. 2013;12(45):85-92
  17. Alvand ZM, Rajabi HR, Mirzaei A, Masoumiasl A, Sadatfaraji H. Rapid and green synthesis of cadmium telluride quantum dots with low toxicity based on a plant-mediated approach after microwave and ultrasonic assisted extraction: Synthesis, characterization, biological potentials and comparison study. Mater Sci Eng C. 2019;98:535-544.
  18. Shateri H, Ranjbar A, Kheiripour N, Ghasemi H, Pourfarjam Y, Habibitabar E, et al. Tempol improves oxidant/antioxidant parameters in testicular tissues of diabetic rats. Life Sci. 2019;221:65-71.
  19. Phang C-W, Karsani SA, Sethi G, Abd Malek SN. Flavokawain C inhibits cell cycle and promotes apoptosis, associated with endoplasmic reticulum stress and regulation of MAPKs and Akt signaling pathways in HCT 116 human colon carcinoma cells. PLoS One. 2016;11(2):e0148775.
  20. Ashokkumar P, Ashoka AH, Collot M, Das A, Klymchenko AS. A fluorogenic BODIPY molecular rotor as an apoptosis marker. Chem Comm. 2019;55(48):6902-5.
  21. Suhaimi SA, Hong SL, Malek SNA. Rutamarin, an active constituent from Ruta angustifolia Pers., induced apoptotic cell death in the HT29 colon adenocarcinoma cell line. Pharmacogn Mag. 2017;13(Suppl 2):S179.
  22. Calderón-Montaño JM, Burgos-Morón E, Orta ML, Mateos S, López-Lázaro M. A hydroalcoholic extract from the leaves of Nerium oleander inhibits glycolysis and induces selective killing of lung cancer cells. Planta Medica. 2013;79(12):1017-1023.
  23. Rashan LJ, Franke K, Khine MM, Kelter G, Fiebig HH, Neumann J, et al. Characterization of the anticancer properties of monoglycosidic cardenolides isolated from Nerium oleander and Streptocaulon tomentosum. J Ethnopharmacol. 2011;134(3):781-788.
  24. Mohapatra S, Biswal AK, Dandapat J, Debata PR. Leaf extract of Nerium oleander L. inhibits cell proliferation, migration and arrest of cell cycle at G2/M phase in HeLa cervical cancer cell. Anticancer Agents Med Chem. 2021;21(5):649-657.
  25. Naderi S, Zare H, Taghavinia N, Irajizad A, Aghaei M, Panjehpour M. Cadmium telluride quantum dots induce apoptosis in human breast cancer cell lines. ToxicolInd Health. 2018;34(5):339-352.
  26. Zheng W, Xu Y-M, Wu D-D, Yao Y, Liang Z-L, Tan HW, et al. Acute and chronic cadmium telluride quantum dots-exposed human bronchial epithelial cells: The effects of particle sizes on their cytotoxicity and carcinogenicity. Biochem Biophys Res Commun. 2018;495(1):899-903.
  27. Nguyen KC, Willmore WG, Tayabali AF. Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Toxicology. 2013;306:114-123.
  28. Aldughaim MS, Al-Anazi MR, Bohol MFF, Colak D, Alothaid H, Wakil SM, et al. Gene expression and transcriptome profiling of changes in a cancer cell line post-exposure to cadmium telluride quantum dots: possible implications in oncogenesis. Dose-Response. 2021;19(2):15593258211019880.
  29. Bottrill M, Green M. Some aspects of quantum dot toxicity. Chem Comm. 2011;47(25):7039-7050.
  30. Gordon BR, Segel GB, Brennan JK, Lichtman MA. Effect of molecular modification on the inhibition of lymphocyte blastogenesis by cardiac glycosides. Blood. 1978;51(3):497-505.
  31. Hovhanissyan N, Mkrtumyan M, Gasparyan G. Cytotoxic activity of extracts of Nerium oleander L. cell culture. Biotechnology in Russia. 2007(5):87-94.
  32. Benson KF, Newman RA, Jensen GS. Antioxidant, anti-inflammatory, anti-apoptotic, and skin regenerative properties of an Aloe vera-based extract of Nerium oleander leaves (NAE-8®). Clin Cosmet Investig Dermatol. 2015:239-248.
  33. Pathak S, Multani AS, Narayan S, Kumar V, Newman RA. AnvirzelTM, an extract of Nerium oleander, induces cell death in human but not murine cancer cells. Anticancer Drug. 2000;11(6):455-463.
  34. Nasu S, Milas L, Kawabe S, Raju U, Newman RA. Enhancement of radiotherapy by oleandrin is a caspase-3 dependent process. Cancer Lett. 2002;185(2):145-151.
  35. Asadi M, Taghizadeh S, Kaviani E, Vakili O, Taheri‐Anganeh M, Tahamtan M, et al. Caspase‐3: structure, function, and biotechnological aspects. Appl Biochem Biotechnol. 2022;69(4):1633-1645.
  36. Contadini C, Ferri A, Cirotti C, Stupack D, Barilà D. Caspase-8 and Tyrosine Kinases: A Dangerous Liaison in Cancer. Cancers. 2023;15(13):3271.
  37. Unnisa A, Greig NH, Kamal MA. Inhibition of caspase 3 and caspase 9 mediated apoptosis: A multimodal therapeutic target in traumatic brain injury. Curr Neuropharmacol. 2023;21(4):1001-1012.
  38. Alhmoud JF, Woolley JF, Al Moustafa A-E, Mallei MI. DNA damage/repair management in cancers. Advances in Medical Biochemistry, Genomics, Physiology, and Pathology. 2021:309-39.
  39. Poetsch AR. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J. 2020;18:207-219.
  40. Kim SH, Shin KH, Moon SH, Jang J, Kim HS, Suh JS, et al. Reassessment of alkaline phosphatase as serum tumor marker with high specificity in osteosarcoma. Cancer Med. 2017;6(6):1311-1322.
  41. Rao S, Snaith A, Marino D, Cheng X, Lwin S, Orriss I, et al. Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer. Br J Cancer. 2017;116(2):227-236.
  42. Tsai LC, Hung MW, Chen YH, Su WC, Chang GG, Chang TC. Expression and regulation of alkaline phosphatases in human breast cancer MCF‐7 cells. Eur J Biochem. 2000;267(5):1330-1339.
  43. Saif MW, Alexander D, Wicox CM. Serum alkaline phosphatase level as a prognostic tool in colorectal cancer: a study of 105 patients. J Appl Res. 2005;5(1):88.
  44. Moura SL, Pallarès-Rusiñol A, Sappia L, Martí M, Pividori MI. The activity of alkaline phosphatase in breast cancer exosomes simplifies the biosensing design. Biosens Bioelectron. 2022;198:113826.
  45. Aldieri E, Atragene D, Bergandi L, Riganti C, Costamagna C, Bosia A, et al. Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-kB activation. FEBS Lett. 2003;552(2-3):141-144.
  46. Korde Choudhari S, Chaudhary M, Bagde S, Gadbail AR, Joshi V. Nitric oxide and cancer: a review. World J Surg Oncol. 2013;11:1-11.
  47. Abrahim NN, Kanthimathi M, Abdul-Aziz A. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase. BMC Complement Altern Med. 2012;12(1):1-11.
  48. Konkimalla VB, Blunder M, Korn B, Soomro SA, Jansen H, Chang W, et al. Effect of artemisinins and other endoperoxides on nitric oxide-related signaling pathway in RAW 264.7 mouse macrophage cells. Nitric Oxide. 2008;19(2):184-191.