The effects of nano-chitosan loaded with gallic acid as an antibacterial and remineralizing agent on some properties of orthodontic adhesive

Document Type : Research Paper

Authors

1 Department of Pedodontics, Orthodontic and Preventive Dentistry, College of Dentistry, Mosul University, Iraq

2 Department of Chemistry, College of Science, University of Mosul, Mosul, Iraq

Abstract

Objective(s): This study aimed to evaluate the effect of adding nano-chitosan loaded with gallic acid to an orthodontic primer as an antimicrobial and remineralizing agent while preserving orthodontic adhesive's physical and chemical properties.
Materials and methods: Nano-chitosan loaded with gallic acid was added to Transbond XT primer to form nano-chitosan/gallic acid primer. This study compared three groups: control without additive, 5%, and 10% Nano-Chitosan/Gallic acid Primer (NCGP). In terms of FTIR, Shear Bond Strength (SBS), Adhesive Remnant Index (ARI), Degree of monomer Conversion (DC), antibacterial properties against Streptococcus mutans and Lactobacillus acidophilus, and Field Emission Scanning Electron Microscopy with Energy Dispersive X-ray spectroscopy (FESEM-EDX) were examined to detect remineralization of demineralized enamel.
Results: Both the 5% and 10% nano-chitosan/gallic acid primer groups demonstrated significant antibacterial activity, a 15–20% increase in shear bond strength (SBS), a 10–15% enhancement in the degree of monomer conversion (DC), and a 30–40% increase in calcium and phosphate weight percentages compared to the control group. Additionally, no significant differences were observed in Adhesive remnant index (ARI) scores among the groups.
Conclusions: The orthodontic adhesive primer modified with nano-chitosan loaded with gallic acid demonstrated enhanced mechanical, chemical, antibacterial, and remineralizing properties compared to the commercial adhesive. Therefore, it can be considered a novel adhesive for treating white spot lesions (WSLs).

Keywords


  1. Triwardhani A, Budipramana M, Sjamsudin  J.  Effect of different white-spot lesion treatment on orthodontic shear strength and enamel morphology: In vitro study. J Int Oral Health. 2020; 12:120-128.
  2. Al-Banaa LR, Alsoufy SS, Al-Khatib AR. Factors Contributing to Microleakage in Orthodontics: A Review of Literature. Al-Rafidain Dent J. 2022; 22(2):376–388.
  3. Ciribè M, Cirillo E, Mammone M, Vallogini G, Festa P, Piga S, Ferrazzano GF, Galeotti A. Efficacy of F-ACP-Containing Dental Mousse in the Remineralization of White Spot Lesions after Fixed Orthodontic Therapy: A Randomized Clinical Trial. Biomedicines. 2024; 12(6):1202.
  4. Shankarappa S, Burk JT, Subbaiah P, Rao RN, Doddawad VG. White spot lesions in fixed orthodontic treatment: Etiology, pathophysiology, diagnosis, treatment, and future research perspectives. J Orthod Sci. 2024; 13:21.
  5. Zhang N, Chen C, Weir MD, Bai Y, Xu HH. Antibacterial and protein-repellent orthodontic cement to combat biofilms and white spot lesions. J Dent. 2015;43(12):1529-1538.
  6. Chambers C, Stewart S, Su B, Sandy J, Ireland A. Prevention and treatment of demineralization during fixed appliance therapy: a review of current methods and future applications. BDJ. 2013; 215(10):505-511.
  7. Alsoufy SS, Al-Banaa LR, Al-Khatib AR, Natural Products Applications in Orthodontics: A Review, Al-Rafidain Dent J. 24 (2024) 499–508.
  8. Wang LF, Luo F, Xue CR, Deng M, Chen C, & Wu H. Antibacterial effect and shear bond strength of an orthodontic adhesive cement containing Galla chinensis extract. Biomed Rep. 2016; 4(4): 507-511.‏
  9. Alkasso IR, Al Qassar SS, Taqa GA. Durability of different types of Mouthwashes on the Salivary Buffering system in Orthodontic Patients. Dentistry 3000. 2021;9(1):178-92.
  10. Gao, S. S., Qian, L. M., Huang, S. B., & Yu, H. Y. Effect of gallic acid on the wear behavior of early carious enamel. Biomed Mater. 2009; 4(3): 034101.‏
  11. Liu Z, Liu T, Li J, Zhou X, Zhang J. The effect of Galla chinensis on the demineralization of enamel. Journal of Sichuan University. Med Sci. 2003; 34(3):507-509.
  12. Chu J P, Li J Y, Hao Y Q and Zhou X D. Effect of compounds of Galla chinensis on remineralization of initial enamel carious lesions in vitro. J Dent. 2007; 35: 383–387.
  13. Nader AH, Sodagar A, Akhavan A, Pourhajibagher M, Bahador A. Antibacterial effects of orthodontic primer harboring chitosan nanoparticles against the multispecies biofilm of cariogenic bacteria in а rat model. Folia Med (Plovdiv). 2020; 62(4):817-824.
  14. Husain, S., Al-Samadani, K. H., Najeeb, S., Zafar, M. S., Khurshid, Z., Zohaib, S., & Qasim, S. B. Chitosan biomaterials for current and potential dental applications. Materials. 2017; 10(6): 602.‏
  15. Simeonov, M., Gussiyska, A., Mironova, J., Nikolova, D., Apostolov, A., Sezanova, K., & Vassileva, E. Novel hybrid chitosan/calcium phosphates microgels for remineralization of demineralized enamel–a model study. Eur. Polym. J. 2019; 119:14-21.‏
  16. Nimbeni, S. B., Nimbeni, B. S., & Divakar, D. D. Role of Chitosan in Remineralization of Enamel and Dentin: A Systematic Review. Int J Clin Pediatr Dent.. 2021; 14(4), 562.‏
  17. Santoso T, Djauharie NK, Kamizar, et al. Carboxymethyl chitosan/ amorphous calcium phosphate and dentin remineralization. J Int Dent Med Res. 2019; 129(1):84–87.
  18. Soran, Z.; Aydin, R.S.; Gumusderelioglu, M. Chitosan scaffolds with BMP-6 loaded alginate microspheres for periodontal tissue engineering. J Microencapsul. 2012; 29: 770–780.
  19. Hameed AR, Majdoub H, Jabrail FH. Effects of Surface Morphology and Type of Cross-Linking of Chitosan-Pectin Microspheres on Their Degree of Swelling and Favipiravir Release Behavior. Polymers. 2023;15(15):3173.
  20. Esmaeili M, Rajabi L, Bakhtiari O. Preparation and characterization of chitosan-boehmite nanocomposite membranes for pervaporative ethanol dehydration. J Macromol Sci, Part A. 2019; 56(11):1022-1034.
  21. Saxena K, Ann CM, Azwar MA, Banavar SR, Matinlinna J, Peters OA, Daood U. Effect of strontium fluoride on mechanical and remineralization properties of enamel: An in-vitro study on a modified orthodontic adhesive. Dent Mater. 2024; 40(5):811-823.
  22. Gutiérrez MF, Malaquias P, Matos TP, Szesz A, Souza S, Bermudez J, Reis A, Loguercio AD, Farago PV. Mechanical and microbiological properties and drug release modeling of an etch-and-rinse adhesive containing copper nanoparticles. Dent Mater. 2017;33(3):309-320.
  23. Alkhayat, Z.I., Salih Al Qassar, S.S., Qasim, A.A. The effect of the static magnetic field on some of the mechanical properties of glass ionomer cement. Ro J Stomato. 2023, 69(4): 227–233
  24. Al-Banaa LR. Evaluation of microleakage for three types of light cure orthodontic band cement. J Oral Biol Craniofac Res. 2022;12(3):352-357.
  25. Musleh RT, Al-Khatib AR. Effects of Modifying Orthodontic Adhesive by Thymus Vulgaris Essential Oil on Shear Bond Strength of the Brackets. J Surv Fish Sci. 2023;10(3S):3510-3519.
  26. Abdulhaddi A, Al Qassar SS, Mohammed AM. Assessment of the mechanical properties and antimicrobial efficiency of orthodontic adhesive modified with Salvadora Persica oil. Ro J Stomatol. 2024;70(2):153-159.
  27. EL-Awady AA, Al-Khalifa HN, Mohamed RE, Ali MM, Abdallah KF, Hosny MM, Mohamed AA, ElHabbak KS, Hussein FA. Shear bond strength and antibacterial efficacy of cinnamon and titanium dioxide nanoparticles incorporated experimental orthodontic adhesive—an in vitro comparative study. Appl. Sci. 2023;13(10):6294.
  28. Al Taweel SM, Zinelis S, Sofyan A, Al Jabbari YS. Does surface priming increase the bond strength of orthodontic brackets? An experimental study.  Clin Exp Dent Res. 2024;10(3): e888.
  29. Mohammed MH, Hasan BA. Equisetum ramosissimum desf-assisted green synthesis of cerium oxide nanoparticles: Characterization and antimicrobial potential against cariogenic Streptococcus mutans. Nanomed J. 2024; 11(3): 250-267.
  30. Gouvêa DB, Santos NM, Pessan JP, Jardim JJ, Rodrigues JA. Enamel subsurface caries-like lesions induced in human teeth by different solutions: a TMR analysis. Braz Dent J. 2020;31(2):157-163.
  31. Taqa AA, Sulieman RT. artificial saliva sorption for three different types of Dental composite resin An in vitro study. Al-Rafidain Dent J. 2011;11(3):296-302.
  32. Valian A, Goudarzi H, Nasiri MJ, Roshanaei A, Sadeghi Mahounak F. Antibacterial and Anti-biofilm Effects of Chitosan Nanoparticles on Streptococcus Mutans Isolates. J Iran Med Counc. 2023;6(2):292-298
  33. Garcia LG, ROCHA MG, Freire RS, Nunes PI, Nunes JV, Fernandes MR, Pereira-Neto WA, Sidrim JJ, Santos FA, Rocha MF, Rodrigues LK. Chitosan microparticles loaded with essential oils inhibit duo-biofilms of Candida albicans and Streptococcus mutans. J Applied Oral Sci. 2023; 31:e20230146.
  34. Rajabnia R, Ghasempour M, Gharekhani S, Gholamhoseinnia S, Soroorhomayoon S. Anti-Streptococcus mutans property of a chitosan: Containing resin sealant. J Int Soc Prevent Communit Dent. 2016; 6:49-53.
  35. Passos MR, Almeida RS, Lima BO, de Souza Rodrigues JZ, de Macêdo Neres NS, Pita LS, Marinho PD, Santos IA, da Silva JP, Oliveira MC, Oliveira MA. Anticariogenic activities of Libidibia ferrea, gallic acid and ethyl gallate against Streptococcus mutans in biofilm model. J Ethnopharmacol. 2021; 274:114059.
  36. Goyal D, Rather SA, Sharma SC, Mahmood A. In vitro anticariogenic effect of gallic acid against Streptococcus mutans. Indian J Exp Biol. 2022; 58(07):445-451.
  37. Ünal S, Bakir SE, Bakir EP. Evaluation of the Antibacterial Effects of Four Different Adhesives Against Three Bacterial Species in Two Time Periods: An In Vitro Comparative Study. J Adv Oral Res. 2022; 13(1):120-126.
  38. Katyal D, Jain RK, Sankar GP, Prasad AS. Antibacterial, cytotoxic, and mechanical characteristics of a novel chitosan-modified orthodontic primer: An in-vitro study. J Int Oral Health. 2023; 15:284-289.
  39. Yao S y, Chen SP, Wang RX, Zhang K, Lin XX, Mai S. Antibacterial activity and bonding performance of carboxymethyl chitosan–containing dental adhesive system. Int J Adhes. 2022; 119:103269.
  40. Shoorgashti R, Havakhah Sh, Nowroozi S, Ghadamgahi B, Mehrara R, Oroojalian F. Evaluation of the antibacterial and cytotoxic activities of Ag/ZnO nanoparticles loaded polycaprolactone/chitosan composites for dental applications. Nanomed J. 2023; 10(1): 68-76.
  41. Almeshal R, Pagni S, Ali A, Zoukhri D. Antibacterial Activity and Shear Bond Strength of Orthodontic Adhesive Containing Various Sizes of Chitosan Nanoparticles: An In Vitro Study. Cureus. 2024; 16(2): e54098.
  42. Mirhashemi AH, Bahador A, Kassaee MZ, Daryakenari GH, Ahmad Akhondi MS, Sodagar A. Antimicrobial Effect of Nano-Zinc Oxide and Nano-Chitosan Particles in Dental Composite Used in Orthodontics. J Med Bacteriol. 2013; 2 (3, 4): 1-10.
  43. Elsharkawy SM, Gomaa YF, Gamal R. Experimental Glass Ionomer Cement Containing Gallic acid: Antibacterial Effect and Fluoride Release an in vitro Study. Open Access Macedonian J Med Sci. 2022; 25;10(D):131-6.
  44. Borges A, Ferreira C, Saavedra MJ, Simoes M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist. 2013;19(4):256-65.
  45. Cheng L, Li J, Hao Y, Zhou X. Effect of compounds of Galla chinensis and their combined effects with fluoride on remineralization of initial enamel lesion in vitro. J Dent. 2008; 36(5):369-373.
  46. Tang B, Yuan H, Cheng L, Zhou X, Huang X, Li J. Control of hydroxyapatite crystal growth by gallic acid. Dent Mater J. 2015; 34(1):108-113.
  47. Parisay I, Boskabady M, Bagheri H, Babazadeh S, Hoseinzadeh M, Esmaeilzadeh F. Investigating the efficacy of a varnish containing gallic acid on remineralization of enamel lesions: an in vitro study. BMC Oral Health. 2024; 24(1):175.
  48. Pourhajibagher M, Sodagar A, Bahador A. An in vitro evaluation of the effects of nanoparticles on shear bond strength and antimicrobial properties of orthodontic adhesives: A systematic review and meta-analysis study. Int Orthod. 2020; 18(2):203-13.
  49. Mohammed, R. R., & Rafeeq, R. A. Evaluation of the shear bond strength of chitosan nanoparticles‐containing orthodontic primer: An in vitro study. International J Dent. 2023(1): 9246297.
  50. Al-Banaa, L. R., Al-Khatib, A., & Jabrail, F. H. (2024). The Antibacterial and remineralizing effects of orthodontic adhesive modified by nano-chitosan loaded with calcium phosphate. Braz Dent Sci. 2024; 27(4):e4552.
  51. Ahmed T, Rahman NA, Alam MK. Comparison of orthodontic bracket debonding force and bracket failure pattern on different teeth in vivo by a prototype debonding device. Biomed Res Int. 2021; 2021(1):6663683.
  52. Santos LK, Rocha HR, Pereira Barroso AC, Otoni RP, de Oliveira Santos CC, Fonseca-Silva T. Comparative analysis of adhesive remnant index of orthodontic adhesive systems. South Eur J Orthod Dentofac Res. 2021; 8(2):26-30.
  53. Sharma P, Jain AK, Ansari A, Adil M. Effects of different adhesion promoters and deproteinizing agents on the shear bond strength of orthodontic brackets: An: in vitro: study. J Orthod Sci. 2020; 9(1):2.
  54. Northrup RG, Berzins DW, Bradley TG, Schuckit W. Shear bond strength comparison between two orthodontic adhesives and self-ligating and conventional brackets. Angle Orthod 2007; 77(4):701-706.
  55. Xu T, Li X, Wang H, Zheng G, Yu G, Wang H, et al. Polymerization shrinkage kinetics and degree of conversion of resin composites. J Oral Sci. 2020; 62(3):275-280.
  56. Machado AH, Garcia IM, da Motta AD, Leitune VC, Collares FM. Triclosan-loaded chitosan as antibacterial agent for adhesive resin. J Dent. 2019; 83:33-39.
  57. Tanaka CB, Lopes DP, Kikuchi LN, Moreira MS, Catalani LH, Braga RR, Kruzic JJ, Gonçalves F. Development of novel dental restorative composites with dibasic calcium phosphate loaded chitosan fillers. Dent Mater. 2020; 36(4):551-559.
  58. Mahapoka E, Arirachakaran P, Watthanaphanit A, Rujiravanit R, Poolthong S. Chitosan whiskers from shrimp shells incorporated into dimethacrylate-based dental resin sealant. Dent Mater J. 2012;31(2):273-279.
  59. Altmann, A.S.P., Collares, F.M., Balbinot, G.S., Leitune, V.C.B., Takimi, A.S., Samuel, S.M.W. Niobium pentoxide phosphate invert glass as a mineralizing agent in an experimental orthodontic adhesive. Angle Orthod. 2017; 87 (5), 759–765.
  60. Kauppi, M.R., Combe, E.C. Polymerization of orthodontic adhesives using modern high-intensity visible curing lights. Am J Orthod Dentofacial Orthop. 2003; 124 (3): 316–322.
  61. Sionkowska A, Płanecka A, Lewandowska K, Kaczmarek B, Szarszewska P. Influence of UV-irradiation on molecular weight of chitosan. Prog Chem Appl Chitin Deriv. 2013;18(18):21-28.
  62. Al-Banaa, LR., Al-Khatib, AR., & Jabrail, FH. Evaluation of the biological, physical, mechanical and chemical properties of orthodontic primer modified by nano-chitosan loaded with bioactive materials. J Oral Biol Craniofac Res. 2025; 15(3): 500-507.