Evaluating the potential of polymer-based nanoparticles in the delivery of thymoquinone: implications for bioavailability and drug efficacy

Document Type : Review Paper

Authors

1 SRM Modinagar College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Delhi-NCR Campus, Delhi-Meerut Road, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India

2 Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India

Abstract

Nigella sativa, commonly known as black cumin, kalonji, or kalajeera, belongs to the Ranunculaceae family and is renowned for its diverse therapeutic applications in conditions such as asthma, diarrhea, and dyslipidemia. This study focuses on thymoquinone, the primary bioactive compound in Nigella sativa, chemically characterized as 2-isopropyl-5-methylbenzo-1,4-quinone (C10H12O2). Thymoquinone exhibits various pharmacological activities, including anti-diabetic, anti-inflammatory, hepatoprotective, antimicrobial, antioxidant, and cardiac stimulant effects. We have investigated various nanoparticle formulation techniques, such as solvent evaporation, salting-out, emulsification, and nanoprecipitation, to develop polymeric nanoparticles to enhance thymoquinone delivery. Special attention was given to thymoquinone-loaded PLGA nanoparticles, which demonstrated significant antimicrobial and antioxidant properties, and to chitosan-based nanoparticles prepared via ionic gelation. Our findings indicate that these polymeric nanoparticles hold considerable promise for targeted and effective drug delivery, potentially revolutionizing the treatment of complex diseases. The study highlights critical methods and characterization techniques, including morphology, zeta potential, chemical composition, particle size distribution, and in vitro release kinetics, which are essential for optimizing the therapeutic efficacy of nanoparticle formulations.

Keywords


  1. Gray JP, Zayasbazan Burgos D, Yuan T, Seeram N, Rebar R, Follmer R, et al. Thymoquinone, a bioactive component of Nigella sativa, normalizes insulin secretion from pancreatic β-cells under glucose overload via regulation of malonyl-CoA. Am J Physiol Endocrinol Metab. 2016; 310(6): 394-404.
  2. Mathur ML, Gaur J, Sharma R, Haldiya KR. Antidiabetic properties of a spice plant Nigella sativa. J Endocrinol Metab. 2011; 1(1): 1-8.
  3. Sultan MT, Butt MS, Anjum FM, Jamil A, Akhtar S, Nasir M. Nutritional profile of indigenous cultivar of black cumin seeds and antioxidant potential of its fixed and essential oil. Pak J Bot. 2009; 41(3): 1321-1330.
  4. Derakhshandeh K, Hosseinalizadeh A, Nikmohammadi M. The effects of PLGA microparticles on intestinal absorption of p-glycoprotein substrate using the everted rat intestinal sac model. Arch Pharm Res. 2011; 34(11): 1989-1997.
  5. Ma Y, Zhao X, Li J, Shen Q. The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability. Int J Nanomedicine. 2012; 7: 559.
  6. Srivastava AK, Bhatnagar P, Singh M, Mishra S, Kumar P, Shukla Y, et al. Synthesis of PLGA nanoparticles of tea polyphenols and their strong in vivo protective effect against chemically induced DNA damage. Int J Nanomedicine. 2013; 8: 1451
  7. Semete B, Booysen L, Lemmer Y, Kalombo L, Katata L, Verschoor J, et al. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine. 2010; 6(5): 662-671.
  8. Ecevit H, Gunduz K, Bilgic N, Izmirli M, Gogebakan B. The effect of thymoquinone on BEAS-2B cell viability and TGF-β1 release. Adv Mod Oncol Res. 2017; 3(1): 15-19.
  9. C Trippier P. Selecting good ‘drug-like’properties to optimize small molecule blood-brain barrier penetration. Curr Med Chem. 2016; 23(14): 1392-1407.
  10. Mihara S, Shibamoto T. The role of flavor and fragrance chemicals in TRPA1 (transient receptor potential cation channel, member A1) activity associated with allergies. Allergy Asthma Clin Immunol. 2015; 11(1): 1-2.
  11. Arnott JA, Planey SL.The influence of lipophilicity indrug discovery and design. Expert Opin Drug Discov. 2012; 7(10) :863–887
  12. Jakaria M, Cho DY, Ezazul Haque M, Karthivashan G, Kim IS, Ganesan P, et al. Neuropharmacological potential and delivery prospects of thymoquinone for neurological disorders. Oxid Med Cell Longev. 2018; 2018(1): 1209801.
  13. Farrugia CA, Grover MJ. Gelatin behavior in dilute J. Kreuter, nanoparticles. Colloidal drug aqueous solutions: Designing a nanoparticulate formulations, Delivery Systems, Marcel Dekker, New York. 1994: 643-649.
  14. Fernández-Urrusuno R, Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res. 1999; 16(10): 1576-1581.
  15. Luppi B, Bigucci F, Corace G, Delucca A, Cerchiara T, Sorrenti M, et al. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur J Pharm Sci. 2011; 44(4): 559-565.
  16. Kateb B, Chiu K, Black KL, Yamamoto V, Khalsa B, Ljubimova JY, et al. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy?. NeuroImage. 2011; 54: 106-124.
  17. Mansour HM, Sohn M, Al-Ghananeem A, DeLuca PP. Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects. Int J Mol Sci. 2010; 11(9): 3298-3322.
  18. Sundar S, Kundu J, Kundu SC. Biopolymeric nanoparticles. Sci Technol Adv Mater. 2010.
  19. Birrenbach G, Speiser PP. Polymerized micelles and their use as adjuvants in immunology. J Pharm Sci. 1976; 65(12): 1763-1766.
  20. Kreuter JO, Speiser PP. New adjuvants on a polymethyl methacrylate base. Infect Immun. 1976; 13(1): 204-210.
  21. Couvreur P, Kante B, Roland M, Guiot P, Bauduin P, Speiser P. Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol. 1979; 31(1): 331-332.
  22. Gurny R, Peppas NA, Harrington DD, Banker GS. Development of biodegradable and injectable latices for controlled release of potent drugs. Drug Dev Ind Pharm. 1981; 7(1): 1-25.
  23. Vauthier-Holtzscherer C, Benabbou S, Spenlehauer G, Veillard M, Couvreur P. Methodology for the preparation of ultra-dispersed polymer systems. STP Pharma Sci. 1991; 1(2): 109-116.
  24. Allémann E, Leroux JC, Gurny R, Doelker E. In vitro extended-release properties of drug-loaded poly (DL-lactic acid) nanoparticles produced by a salting-out procedure. Pharm Res. 1993; 10(12): 1732-1737.
  25. Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev. 2005; 57(11): 1595-1639.
  26. Othman N, Masarudin MJ, Kuen CY, Dasuan NA, Abdullah LC, Jamil SNAM. Synthesis and optimization of chitosan nanoparticles loaded with l-ascorbic acid and thymoquinone. Nanomaterials. 2018.
  27. Kazan A, Yesil-Celiktas O, Zhang YS. Fabrication of thymoquinone-loaded albumin nanoparticles by microfluidic particle synthesis and their effect on planarian regeneration. Macromol Biosci. 2019; 1–6.
  28. Ghanem HB. Impact of zinc oxide nanoparticles and thymoquinone in Ehrlich ascites carcinoma induced in mice. J Biochem Mol Toxicol. 2021; 35.
  29. Banupriya SJ, Kavithaa K, Poornima A, Haribalan P, Sri Renukadevi B, Sumathi S. Modulation of gene expression by thymoquinone conjugated zinc oxide nanoparticles arrested cell cycle, DNA damage and increased apoptosis in triple negative breast cancer cell line MDA-MB-231. Drug Dev Ind Pharm. 2021; 47: 1943-1951.
  30. Salama B, Alzahrani KJ, Alghamdi KS, Al-Amer O, Hassan KE, Elhefny MA, et al. Silver nanoparticles enhance oxidative stress, inflammation, and apoptosis in liver and kidney tissues: potential protective role of Thymoquinone. Biol Trace Elem Res. 2023; 201(6): 2942–2954.
  31. Fahmy HM, Fathy MM, Abd-elbadia RA, Elshemey WM. Targeting of Thymoquinone-loaded mesoporous silica nanoparticles to different brain areas: In vivo study. Life Sci. 2019; 222, 94–102.
  32. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001; 70(1-2): 1-20.
  33. Cano A, Cano A, Ettcheto M, Chang JH, Barroso E, Espina M, et al. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer's disease mice model. J Control Release. 2019; 301: 62-75.
  34. Cano A, Sánchez-López E, Ettcheto M, López-Machado A, Espina M, Souto EB, et al. Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases. Nanomedicine. 2020; 15(12): 1239-1261.
  35. Owens III DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006; 307(1): 93-102.
  36. Schaffazick SR, Pohlmann AR, Dalla-Costa T, Guterres SS. Freeze-drying polymeric colloidal suspensions: nanocapsules, nanospheres and nanodispersion. A comparative study. Eur J Pharm Sci. 2003; 56(3): 501-505.
  37. Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020; 25(16): 3731.
  38. Catarina Pinto Reis, Ronald J. Neufeld, Antonio J. Ribeiro, Francisco Veiga. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006; 2: 8-21.
  39. Desgouilles S, Vauthier C, Bazile D, Vacus J, Grossiord JL, Veillard M, et al. The design of nanoparticles obtained by solvent evaporation: a comprehensive study. Langmuir. 2003; 19(22): 9504-9510
  40. Jose S, Sowmya S, Cinu TA, Aleykutty NA, Thomas S, Souto EB. Surface modified PLGA nanoparticles for brain targeting of Bacoside-A. Eur J Pharm Sci. 2014; 63: 29-35.
  41. Grumezescu AM, editor. Design and development of new nanocarriers. William Andrew. 2017.
  42. Bohrey S, Chourasiya V, Pandey A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg. 2016; 3(1): 1-7.
  43. Christine V, Ponchel G. Polymer nanoparticles for nanomedicines. A guide for their design. Anticancer Res. 2017; 37: 1544.
  44. Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J Pharm Sci. 2016; 11(3): 404-416.
  45. Varsha KP, Krishnakumar K, Dineshkumar B. Nanoencapsulation of polyphenol compounds: A review. Indo Am J Pharm Res. 2017; 7(2): 7789-7797.
  46. Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm. 1999; 25(4): 471-476.
  47. Galindo-Rodriguez S, Allemann E, Fessi H, Doelker E. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res. 2004; 21(8): 1428-1439
  48. Ganachaud F, Katz JL. Nanoparticles and nanocapsules created using the ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high‐shear devices. ChemPhysChem. 2005; 6(2): 209-216.
  49. Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm. 1998; 24(12): 1113-1128.
  50. Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P. Poly (alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev. 2003; 55(4): 519-548
  51. Dimitrova B, Ivanov IB, Nakache E. Mass transport effects on the stability of emulsion: emulsion films with acetic acid and acetone diffusing across the interface. J Dispers Sci Technol. 1988; 9(4): 321-341.
  52. Wehrle P, Magenheim B, Benita S. The influence of process parameters on the PLA nanoparticle size distribution, evaluated by means of factorial design. Eur J Pharm Biopharm. 1995; 41(1): 19-26.
  53. Némati F, Dubernet C, Fessi H, de Verdiere AC, Poupon MF, Puisieux F, et al. Reversion of multidrug resistance using nanoparticles in vitro: influence of the nature of the polymer. Int J Pharm. 1996; 138(2): 237-246
  54. Molpeceres J, Guzman M, Aberturas MR, Chacon M, Berges L. Application of central composite designs to the preparation of polycaprolactone nanoparticles by solvent displacement. J Pharm Sci. 1996; 85(2): 206-213.
  55. Irache JM, Huici M, Konecny M, Espuelas S, Campanero MA, Arbos P. Bioadhesive properties of Gantrez nanoparticles. Molecules. 2005; 10(1): 126-145.
  56. Arbos P, Wirth M, Arangoa MA, Gabor F, Irache JM. Gantrez® AN as a new polymer for the preparation of ligand–nanoparticle conjugates. J Control Release. 2002; 83(3): 321-330
  57. Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infection. 2017; 45: 737-779.
  58. Memişoğlu E, Bochot A, Özalp M, Şen M, Duchêne D, Hincal AA. Direct formation of nanospheres from amphiphilic β-cyclodextrin inclusion complexes. Pharm Res. 2003; 20(1): 117-125
  59. Kumar S, Dilbaghi N, Saharan R, Bhanjana G. Nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs. BioNanoScience. 2012; 2(4): 227-250.
  60. Souto EB, Souto SB, Campos JR, Severino P, Pashirova TN, Zakharova LY, et al. Nanoparticle delivery systems in the treatment of diabetes complications. Molecules. 2019; 24(23): 4209.
  61. Quintanar-Guerrero D, Allémann E, Doelker E, Fessi H. Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharm Res. 1998; 15(7): 1056-1062.
  62. Vasile C. Polymeric Nanomaterials in Nanotherapeutics. Elsevier; 2018.
  63. Yammine J, Chihib NE, Gharsallaoui A, Ismail A, Karam L. Advances in essential oils encapsulation: Development, characterization and release mechanisms. Polym Bull. 2024; 81(5): 3837-3882.
  64. Wang Y, Li P, Truong-Dinh Tran T, Zhang J, Kong L. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials. 2016; 6(2): 26
  65. Lim K, Hamid ZA. Polymer nanoparticle carriers in drug delivery systems: Research trend. Applications of Nanocomposite Materials in Drug Delivery. 2018: 217-237.
  66. Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: An overview of preparation and characterization. J Appl Pharm Sci. 2011; 1(6): 228-234.
  67. Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 2009; 26(5): 1025-1058.
  68. Jung SW, Jeong YL, Kim YH, Kim SH. Self-assembled polymeric nanoparticles of poly (ethylene glycol) grafted pullulan acetate as a novel drug carrier. Arch Pharm Res. 2004; 27(5): 562.
  69. Liu M, Zhou Z, Wang X, Xu J, Yang K, Cui Q, et al. Formation of poly (L, D-lactide) spheres with controlled size by direct dialysis. Polymer. 2007; 48(19): 5767-5779.
  70. Hornig S, Heinze T. Nanoscale structures of dextran esters. Carbohydr Polym. 2007; 68(2): 280-286
  71. Heinze T, Michealis N. Reactive polymeric nanoparticles based on unconventional dextran derivatives. Eur Polym J. 2007; 43(3): 697-703.
  72. Park KH, Song HC, Na K, Bom HS, Lee KH, Kim S, et al. Ionic strength-sensitive pullulan acetate nanoparticles (PAN) for intratumoral administration of radioisotope: Ionic strength-dependent aggregation behavior and 99mTechnetium retention property. Colloids Surf B Biointerfaces. 2007; 59(1): 16-23.
  73. Choi SW, Kim JH. Design of surface-modified poly (D, L-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone. J Control Release. 2007; 122(1): 24-30.
  74. He X, Ma J, Mercado AE, Xu W, Jabbari E. Cytotoxicity of paclitaxel in biodegradable self-assembled core-shell poly (lactide-co-glycolide ethylene oxide fumarate) nanoparticles. Pharm Res. 2008; 25(7): 1552-1562.
  75. Zhang Z, Lee SH, Gan CW, Feng SS. In vitro and in vivo investigation on PLA–TPGS nanoparticles for controlled and sustained small molecule chemotherapy. Pharm Res. 2008; 25(8): 1925-1935
  76. Sheikh FA, Barakat NA, Kanjwal MA, Aryal S, Khil MS, Kim HY. Novel self-assembled amphiphilic poly (ε-caprolactone)-grafted-poly (vinyl alcohol) nanoparticles: Hydrophobic and hydrophilic drugs carrier nanoparticles. J Mater Sci Mater Med. 2009; 20(3): 821-831.
  77. Errico C, Bartoli C, Chiellini F, Chiellini E. Poly (hydroxyalkanoates)-based polymeric nanoparticles for drug delivery. J Biomed Biotechnol. 2009; 2009 (1): 571702.
  78. Nagavarma BVN, Yadav HK, Ayaz AVLS, Vasudha LS, Shivakumar HG. Different techniques for preparation of polymeric nanoparticles-a review. Asian J Pharm Clin Res. 2012; 5(3): 16-23.
  79. Alam S, Khan ZI, Mustafa G, Kumar M, Islam F, Bhatnagar A, et al. Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: A pharmacoscintigraphic study. Int J Nanomedicine. 2012; 7: 5705–5718.
  80. Rahat, I., Imam, S.S., Rizwanullah, M., Alshehri, S., Asif, M., Kala, C, et al. Thymoquinone-entrapped chitosan-modified nanoparticles: formulation optimization to preclinical bioavailability assessments. Drug Deliv. 2021; 28: 973–984.
  81. Ibrahim WN, Rosli LMBM, Doolaanea AA. Formulation, cellular uptake and cytotoxicity of thymoquinone-loaded plga nanoparticles in malignant melanoma cancer cells. Int J Nanomed. 2020; 15: 8059–8074.
  82. El-Far AH, Salaheldin TA, Godugu K, Darwish NH, Mousa SA. Thymoquinone and its nanoformulation attenuate colorectal and breast cancers and alleviate doxorubicin-induced cardiotoxicity. Nanomed. 2021.
  83. Imam, S.S., Gilani, S.J., Bin Jumah, M.N., Rizwanullah, M., Zafar, A., Ahmed, M.M, et al. Harnessing lipid polymer hybrid nanoparticles for enhanced oral bioavailability of thymoquinone: in vitro and in vivo assessments. Polymers (Basel). 2022; 14.
  84. Saghir, S.A.M., Al-Gabri, N.A., Khafaga, A.F., El-Shaer, N.H., Alhumaidh, K.A., Elsadek, M.F, et al. Thymoquinone-PLGA-PVA nanoparticles ameliorate bleomycin-induced pulmonary fibrosis in rats via regulation of inflammatory cytokines and iNOS signaling. Animals. 2019; 9: 951.
  85. Xie X, Tao Q, Zou Y, Zhang F, Guo M, Wang Y, et al. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J Agric Food Chem. 2011; 59(17): 9280-9289.
  86. Calvo P, Remuñan-López C, Vila-Jato JL, Alonso MJ. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res. 1997; 14(10): 1431-1436.
  87. Aktaş Y, Andrieux K, Alonso MJ, Calvo P, Gürsoy RN, Couvreur P, et al. Preparation and in vitro evaluation of chitosan nanoparticles containing a caspase inhibitor. Int J Pharm. 2005; 298(2): 378-383.
  88. Bohrey S, Chourasiya V, Pandey A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg. 2016; 3(1): 1-7.
  89. Andreani T, Kiill CP, de Souza AL, Fangueiro JF, Doktorovová S, Garcia ML, et al. Effect of cryoprotectants on the reconstitution of silica nanoparticles produced by sol–gel technology. J Therm Anal Calorim. 2015; 120(1): 1001-1007.
  90. Mathurin J, Pancani E, Deniset-Besseau A, Kjoller K, Prater CB, Gref R, et al. How to unravel the chemical structure and component localization of individual drug-loaded polymeric nanoparticles by using tapping AFM-IR. Analyst. 2018; 143(24): 5940-5949.
  91. Hickey JW, Santos JL, Williford JM, Mao HQ. Control of polymeric nanoparticle size to improve therapeutic delivery. J Control Release. 2015; 219: 536-547.
  92. Brar SK, Verma M. Measurement of nanoparticles by light-scattering techniques. TrAC Trends Anal Chem. 2011; 30(1): 4-17.
  93. Carvalho PM, Felício MR, Santos NC, Gonçalves S, Domingues MM. Application of light scattering techniques to nanoparticle characterization and development. Front Chem. 2018; 6: 237.
  94. Mourdikoudis S, Pallares RM, Thanh NT. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018; 10(27): 12871-12934.
  95. Lu M, Yang X, Yang Y, Qin P, Wu X, Cai Z. Nanomaterials as assisted matrix of laser desorption/ionization time-of-flight mass spectrometry for the analysis of small molecules. Nanomaterials. 2017; 7(4): 87.
  96. Yang Y, Jiang Y, Xu J, Yu J. Conducting polymeric nanoparticles synthesized in reverse micelles and their gas sensitivity based on quartz crystal microbalance. Polymer. 2007; 48(15): 4459-4465.
  97. Dazon C, Witschger O, Bau S, Fierro V, Llewellyn PL. Nanomaterial identification of powders: comparing volume specific surface area, X-ray diffraction and scanning electron microscopy methods. Environ Sci Nano. 2019; 6(1): 152-162.
  98. Zielińska A, Ferreira NR, Feliczak-Guzik A, Nowak I, Souto EB. Loading, release profile and accelerated stability assessment of monoterpenes-loaded solid lipid nanoparticles (SLN). Pharm Dev Technol 2020: 1-3.
  99. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop J Pharm Res. 2013; 12(2): 265-273.
  100. Ostolska I, Wiśniewska M. Application of the zeta potential measurements to explanation of colloidal Cr2O3 stability mechanism in the presence of the ionic polyamino acids. Colloid Polym Sci. 2014; 292(10): 2453-2464.
  101. Zielińska A, Ferreira NR, Durazzo A, Lucarini M, Cicero N, Mamouni SE, et al. Development and optimization of alpha-pinene-loaded solid lipid nanoparticles (SLN) using experimental factorial design and dispersion analysis. Molecules. 2019; 24(15): 2683.
  102. Németh Z, Csóka I, Semnani Jazani R, Sipos B, Haspel H, Kozma G, et al. Quality by design-driven zeta potential optimisation study of liposomes with charge imparting membrane additives. Pharmaceutics. 2022; 14(9): 1798.
  103. Doktorovová S, Santos DL, Costa I, Andreani T, Souto EB, Silva AM. Cationic solid lipid nanoparticles interfere with the activity of antioxidant enzymes in hepatocellular carcinoma cells. Int J Pharm. 2014; 471(1-2): 18-27.
  104. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016; 116(4): 2602-2663.
  105. Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. 2010; 7(4): 429-444.
  106. Khalbas AH, Albayati TM, Ali NS, Salih IK. Drug loading methods and kinetic release models using of mesoporous silica nanoparticles as a drug delivery system: A review. S Afr J Chem Eng. 2024; 50: 261-280.
  107. Shen J, Burgess DJ. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: recent developments and challenges. Drug Deliv Transl Res. 2013; 3(5): 409-415.
  108. Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. 2010; 7(4): 429-444.